The Birthday Paradox

Birthday Paradox

Let $m<n$. We figure out m, n later.
We will put m balls into n boxes uniformly at random.
What is prob that some box has ≥ 2 balls?

Birthday Paradox

Let $m<n$. We figure out m, n later.
We will put m balls into n boxes uniformly at random.
What is prob that some box has ≥ 2 balls?
We ask opp: What is prob that NO box has ≥ 2 balls?

Birthday Paradox

Let $m<n$. We figure out m, n later.
We will put m balls into n boxes uniformly at random.
What is prob that some box has ≥ 2 balls?
We ask opp: What is prob that NO box has ≥ 2 balls?

Birthday Paradox

Let $m<n$. We figure out m, n later.
We will put m balls into n boxes uniformly at random.
What is prob that some box has ≥ 2 balls?
We ask opp: What is prob that NO box has ≥ 2 balls?

- Number of ways to put balls into boxes: n^{m}

Birthday Paradox

Let $m<n$. We figure out m, n later.
We will put m balls into n boxes uniformly at random.
What is prob that some box has ≥ 2 balls?
We ask opp: What is prob that NO box has ≥ 2 balls?

- Number of ways to put balls into boxes: n^{m}
- Number of ways to put balls into boxes: so that no box has ≥ 2 balls: $n(n-1) \cdots(n-m+1)$

Birthday Paradox

Let $m<n$. We figure out m, n later.
We will put m balls into n boxes uniformly at random.
What is prob that some box has ≥ 2 balls?
We ask opp: What is prob that NO box has ≥ 2 balls?

- Number of ways to put balls into boxes: n^{m}
- Number of ways to put balls into boxes: so that no box has ≥ 2 balls: $n(n-1) \cdots(n-m+1)$
Hence we seek

$$
\frac{n(n-1)(n-2) \cdots(n-m+1)}{n^{m}}
$$

Approx

$$
\begin{gathered}
\frac{n(n-1)(n-2) \cdots(n-m+1)}{n^{m}} \\
=\frac{n}{n} \times \frac{n-1}{n} \times \frac{n-2}{n} \times \cdots \times \frac{n-m+1}{n} \\
=1 \times\left(1-\frac{1}{n}\right) \times\left(1-\frac{2}{n}\right) \times \cdots \times\left(1-\frac{m-1}{n}\right)
\end{gathered}
$$

Approx

$$
\begin{gathered}
\frac{n(n-1)(n-2) \cdots(n-m+1)}{n^{m}} \\
=\frac{n}{n} \times \frac{n-1}{n} \times \frac{n-2}{n} \times \cdots \times \frac{n-m+1}{n} \\
=1 \times\left(1-\frac{1}{n}\right) \times\left(1-\frac{2}{n}\right) \times \cdots \times\left(1-\frac{m-1}{n}\right)
\end{gathered}
$$

Recall: $e^{-x} \sim 1-x$ for x small. So we have

$$
\begin{gathered}
\sim e^{-1 / n} \times e^{-2 / n} \times \cdots e^{-(m-1) / n}=e^{-(1 / n)(1+2+\cdots+(m-1)} \\
\sim e^{-m^{2} / 2 n}
\end{gathered}
$$

Real Numbers!

If $m<n$ and you put m balls in n boxes at random then prob that ≥ 2 balls in same box is approx:

$$
1-e^{-m^{2} / 2 n}
$$

To get this $>\frac{1}{2}$ need $1-e^{-m^{2} / 2 n}>\frac{1}{2}$

$$
\begin{gathered}
e^{-m^{2} / 2 n}<\frac{1}{2} \\
-\frac{m^{2}}{2 n}<\ln (0.5) \sim-0.7 \\
\frac{m^{2}}{2 n}>0.7 \\
m^{2}>1.4 n \\
m>\sqrt{1.4 n}
\end{gathered}
$$

Real Numbers!

If $m>\sqrt{1.4 n}$ and you put m balls in n boxes at random then prob that ≥ 2 balls in same box is over $\frac{1}{2}$.
$n=365$.
$m=\lceil 1.4 \sqrt{n}\rceil=23$
Birthday Paradox: If there are 23 people in a room then prob two have the same birthday is $>\frac{1}{2}$.

Alternative Proof

Prob balls i, j in same box is $\frac{n}{n^{2}}=\frac{1}{n}$.
Prob balls i, j NOT in same box is $\frac{n}{n^{2}}=1-\frac{1}{n}$.

Alternative Proof

Prob balls i, j in same box is $\frac{n}{n^{2}}=\frac{1}{n}$.
Prob balls i, j NOT in same box is $\frac{n}{n^{2}}=1-\frac{1}{n}$.
Prob NO pair is in same box: Want to say $\left(1-\frac{1}{n}\right)\binom{m}{2}$.

Alternative Proof

Prob balls i, j in same box is $\frac{n}{n^{2}}=\frac{1}{n}$.
Prob balls i, j NOT in same box is $\frac{n}{n^{2}}=1-\frac{1}{n}$.
Prob NO pair is in same box: Want to say $\left(1-\frac{1}{n}\right)^{\binom{m}{2}}$.
Not quite. That would be true if they are all ind. But this is good approx.

Alternative Proof

Prob balls i, j in same box is $\frac{n}{n^{2}}=\frac{1}{n}$.
Prob balls i, j NOT in same box is $\frac{n}{n^{2}}=1-\frac{1}{n}$.
Prob NO pair is in same box: Want to say $\left(1-\frac{1}{n}\right)^{\binom{m}{2}}$.
Not quite. That would be true if they are all ind. But this is good approx.

Prob NO pair is in same box $<\left(1-\frac{1}{n}\right)^{\binom{m}{2}} \sim e^{-m^{2} / 2 n}$.
Prob SOME pair is in same box $>1-e^{-m^{2} / 2 n}$.
Same as before.

Three Balls in a Box

Prob balls i, j, k in same box is $\frac{n}{n^{3}}=\frac{1}{n^{2}}$.
Prob balls i, j, k NOT in same box is $1-\frac{1}{n^{2}}$.

Three Balls in a Box

Prob balls i, j, k in same box is $\frac{n}{n^{3}}=\frac{1}{n^{2}}$.
Prob balls i, j, k NOT in same box is $1-\frac{1}{n^{2}}$.
Prob NO triple is in same box: $\operatorname{APPROX}\left(1-\frac{1}{n^{2}}\right)^{\binom{m}{3}} \sim e^{-m^{3} / 6 n^{2}}$
Prob SOME triple is in same box: APPROX $1-e^{-m^{3} / 6 n^{2}}$

Real Numbers!

If $m<n$ and you put m balls in n boxes at random then prob that ≥ 3 balls in same box is approx:

$$
1-e^{-m^{3} / 6 n^{2}}
$$

Real Numbers!

If $m<n$ and you put m balls in n boxes at random then prob that ≥ 3 balls in same box is approx:

$$
1-e^{-m^{3} / 6 n^{2}}
$$

To get this $>\frac{1}{2}$ need $1-e^{-m^{3} / 6 n^{2}}>\frac{1}{2}$

$$
\begin{aligned}
& e^{-m^{3} / 6 n^{2}}<\frac{1}{2} \\
&-\frac{m^{3}}{6 n^{2}}<\ln (0.5) \sim-0.7
\end{aligned}
$$

Real Numbers!

If $m<n$ and you put m balls in n boxes at random then prob that ≥ 3 balls in same box is approx:

$$
1-e^{-m^{3} / 6 n^{2}}
$$

To get this $>\frac{1}{2}$ need $1-e^{-m^{3} / 6 n^{2}}>\frac{1}{2}$

$$
\begin{aligned}
& e^{-m^{3} / 6 n^{2}}<\frac{1}{2} \\
&-\frac{m^{3}}{6 n^{2}}<\ln (0.5) \sim-0.7
\end{aligned}
$$

Continued on Next Slide.

Real Numbers! (Cont)

$$
0.7<\frac{m^{3}}{6 n^{2}}
$$

Real Numbers! (Cont)

$$
\begin{gathered}
0.7<\frac{m^{3}}{6 n^{2}} \\
4.2 n^{2}<m^{3}
\end{gathered}
$$

Real Numbers! (Cont)

$$
\begin{gathered}
0.7<\frac{m^{3}}{6 n^{2}} \\
4.2 n^{2}<m^{3} \\
m>(4.2)^{1 / 3} n^{2 / 3} \sim 1.61 n^{2 / 3}
\end{gathered}
$$

Real Numbers! (Cont)

$$
\begin{gathered}
0.7<\frac{m^{3}}{6 n^{2}} \\
4.2 n^{2}<m^{3} \\
m>(4.2)^{1 / 3} n^{2 / 3} \sim 1.61 n^{2 / 3}
\end{gathered}
$$

Birthday: $n=365$ then need

$$
m \geq(1.61)(365)^{2 / 3} \sim 82
$$

SO if 82 people in a room prob is $>\frac{1}{2}$ that three have same bday!

