# The Birthday Paradox

Let m < n. We figure out m, n later. We will put m balls into n boxes uniformly at random. What is prob that some box has  $\geq 2$  balls?

Let m < n. We figure out m, n later. We will put m balls into n boxes uniformly at random. What is prob that some box has  $\geq 2$  balls?

We ask opp: What is prob that NO box has  $\geq 2$  balls?

Let m < n. We figure out m, n later. We will put m balls into n boxes uniformly at random. What is prob that some box has  $\geq 2$  balls?

We ask opp: What is prob that NO box has  $\geq 2$  balls?

Let m < n. We figure out m, n later. We will put m balls into n boxes uniformly at random. What is prob that some box has  $\geq 2$  balls?

We ask opp: What is prob that NO box has  $\geq 2$  balls?

Number of ways to put balls into boxes:  $n^m$ 

Let m < n. We figure out m, n later. We will put m balls into n boxes uniformly at random. What is prob that some box has  $\geq 2$  balls?

We ask opp: What is prob that NO box has  $\geq 2$  balls?

- Number of ways to put balls into boxes:  $n^m$
- Number of ways to put balls into boxes: so that no box has  $\geq 2$  balls:  $n(n-1)\cdots(n-m+1)$

Let m < n. We figure out m, n later.

We will put m balls into n boxes uniformly at random.

What is prob that some box has  $\geq 2$  balls?

We ask opp: What is prob that NO box has  $\geq 2$  balls?

- Number of ways to put balls into boxes:  $n^m$
- Number of ways to put balls into boxes: so that no box has  $\geq 2$  balls:  $n(n-1)\cdots(n-m+1)$

Hence we seek

$$\frac{n(n-1)(n-2)\cdots(n-m+1)}{n^m}$$

# **Approx**

$$\frac{n(n-1)(n-2)\cdots(n-m+1)}{n^m}$$

$$= \frac{n}{n} \times \frac{n-1}{n} \times \frac{n-2}{n} \times \cdots \times \frac{n-m+1}{n}$$

$$= 1 \times \left(1 - \frac{1}{n}\right) \times \left(1 - \frac{2}{n}\right) \times \cdots \times \left(1 - \frac{m-1}{n}\right)$$

# **Approx**

$$\frac{n(n-1)(n-2)\cdots(n-m+1)}{n^m}$$

$$= \frac{n}{n} \times \frac{n-1}{n} \times \frac{n-2}{n} \times \cdots \times \frac{n-m+1}{n}$$

$$= 1 \times \left(1 - \frac{1}{n}\right) \times \left(1 - \frac{2}{n}\right) \times \cdots \times \left(1 - \frac{m-1}{n}\right)$$

Recall:  $e^{-x} \sim 1 - x$  for x small. So we have

$$\sim e^{-1/n} \times e^{-2/n} \times \cdots e^{-(m-1)/n} = e^{-(1/n)(1+2+\cdots+(m-1))}$$

$$\sim e^{-m^2/2n}$$

If m < n and you put m balls in n boxes at random then prob that  $\geq 2$  balls in same box is approx:

$$1 - e^{-m^2/2n}$$

To get this  $> \frac{1}{2}$  need  $1 - e^{-m^2/2n} > \frac{1}{2}$ 

$$e^{-m^2/2n}<\frac{1}{2}$$

$$-\frac{m^2}{2n} < \ln(0.5) \sim -0.7$$

$$\frac{m^2}{2n} > 0.7$$

$$m^2 > 1.4n$$

$$m > \sqrt{1.4n}$$



If  $m > \sqrt{1.4n}$  and you put m balls in n boxes at random then prob that  $\geq 2$  balls in same box is over  $\frac{1}{2}$ .

$$n = 365.$$

$$m = \left\lceil 1.4\sqrt{n} \right\rceil = 23$$

**Birthday Paradox:** If there are 23 people in a room then prob two have the same birthday is  $> \frac{1}{2}$ .

Prob balls i,j in same box is  $\frac{n}{n^2} = \frac{1}{n}$ . Prob balls i,j NOT in same box is  $\frac{n}{n^2} = 1 - \frac{1}{n}$ .

Prob balls i,j in same box is  $\frac{n}{n^2} = \frac{1}{n}$ . Prob balls i,j NOT in same box is  $\frac{n}{n^2} = 1 - \frac{1}{n}$ .

Prob NO pair is in same box: Want to say  $(1 - \frac{1}{n})^{\binom{m}{2}}$ .

Prob balls i,j in same box is  $\frac{n}{n^2} = \frac{1}{n}$ . Prob balls i,j NOT in same box is  $\frac{n}{n^2} = 1 - \frac{1}{n}$ .

Prob NO pair is in same box: Want to say  $(1 - \frac{1}{n})^{\binom{m}{2}}$ .

Not quite. That would be true if they are all ind. But this is good approx.

Prob balls i,j in same box is  $\frac{n}{n^2} = \frac{1}{n}$ . Prob balls i,j NOT in same box is  $\frac{n}{n^2} = 1 - \frac{1}{n}$ .

Prob NO pair is in same box: Want to say  $(1 - \frac{1}{n})^{\binom{m}{2}}$ .

Not quite. That would be true if they are all ind. But this is good approx.

Prob NO pair is in same box  $<(1-\frac{1}{n})^{\binom{m}{2}}\sim e^{-m^2/2n}$ . Prob SOME pair is in same box  $>1-e^{-m^2/2n}$ . Same as before.

#### Three Balls in a Box

Prob balls i, j, k in same box is  $\frac{n}{n^3} = \frac{1}{n^2}$ . Prob balls i, j, k NOT in same box is  $1 - \frac{1}{n^2}$ .

#### Three Balls in a Box

Prob balls i, j, k in same box is  $\frac{n}{n^3} = \frac{1}{n^2}$ . Prob balls i, j, k NOT in same box is  $1 - \frac{1}{n^2}$ .

Prob NO triple is in same box: APPROX  $(1-\frac{1}{n^2})^{\binom{m}{3}}\sim e^{-m^3/6n^2}$ Prob SOME triple is in same box: APPROX  $1-e^{-m^3/6n^2}$ 

If m < n and you put m balls in n boxes at random then prob that  $\geq 3$  balls in same box is approx:

$$1 - e^{-m^3/6n^2}$$

If m < n and you put m balls in n boxes at random then prob that  $\geq 3$  balls in same box is approx:

$$1 - e^{-m^3/6n^2}$$

To get this 
$$> \frac{1}{2}$$
 need  $1 - e^{-m^3/6n^2} > \frac{1}{2}$ 

$$e^{-m^3/6n^2} < \frac{1}{2}$$

$$-\frac{m^3}{6n^2} < \ln(0.5) \sim -0.7$$

If m < n and you put m balls in n boxes at random then prob that  $\geq 3$  balls in same box is approx:

$$1 - e^{-m^3/6n^2}$$

To get this 
$$> \frac{1}{2}$$
 need  $1 - e^{-m^3/6n^2} > \frac{1}{2}$ 

$$e^{-m^3/6n^2} < \frac{1}{2}$$

$$-\frac{m^3}{6n^2} < \ln(0.5) \sim -0.7$$

Continued on Next Slide.

$$0.7<\frac{m^3}{6n^2}$$

$$0.7<\frac{m^3}{6n^2}$$

$$4.2n^2 < m^3$$

$$0.7<\frac{m^3}{6n^2}$$

$$4.2n^2 < m^3$$

$$m > (4.2)^{1/3} n^{2/3} \sim 1.61 n^{2/3}$$

$$0.7<\frac{m^3}{6n^2}$$

$$4.2n^2 < m^3$$

$$m > (4.2)^{1/3} n^{2/3} \sim 1.61 n^{2/3}$$

**Birthday:** n = 365 then need

$$m \ge (1.61)(365)^{2/3} \sim 82.$$

SO if 82 people in a room prob is  $> \frac{1}{2}$  that three have same bday!