START

RECORDING

Circuits

CMSC250

Circuits

- We can build circuits for addition, multiplication, division, bit shifting...
- Every logical operation we have learned (\sim, \wedge, \vee) maps straightforwardly to a tiny piece of hardware called a logical gate.
- These gates connect to each other to make arbitrarily complicated circuits!

From a truth table to a formula

\mathbf{p}	\mathbf{q}	\mathbf{r}	output
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

From a truth table to a formula

\mathbf{p}	\mathbf{q}	\mathbf{r}	output
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- Let us focus entirely on the rows that output 1!

Focusing on the $1^{\text {st }}$ row...

\mathbf{p}	\mathbf{q}	\mathbf{r}	output
0	0	0	1

- Write a formula that is ' 1 ' only on inputs $p=0, q=0, r=0$.

Focusing on the $1^{\text {st }}$ row...

\mathbf{p}	\mathbf{q}	\mathbf{r}	output
0	0	0	1

- Write a simple formula that is ' 1 ' only on inputs $p=0, q=0, r=0$.

$$
\sim p \wedge \sim q \wedge \sim r
$$

Focusing on the $4^{\text {th }}$ row...

\mathbf{p}	\mathbf{q}	\mathbf{r}	output
0	1	1	1

- Same deal

Focusing on the $4^{\text {th }}$ row...

\mathbf{p}	\mathbf{q}	\mathbf{r}	output
0	1	1	1

- Same deal

$$
\sim p \wedge q \wedge r
$$

Focusing on the $5^{\text {th }}$ row...

\mathbf{p}	\mathbf{q}	\mathbf{r}	output
1	0	0	1

$$
p \wedge \sim q \wedge \sim r
$$

Focusing on the $8^{\text {th }}$ row...

\mathbf{p}	\mathbf{q}	\mathbf{r}	output
1	1	1	1

$$
p \wedge q \wedge r
$$

How do we combine those simple formulae?
$\sim p \wedge \sim q \wedge \sim r$
$\sim p \wedge q \wedge r$
$p \wedge \sim q \wedge \sim r$
$p \wedge q \wedge r$

How do we combine those simple formulae?

$(\sim p \wedge \sim q \wedge \sim r)$
$(\sim p \wedge q \wedge r)$
$(p \wedge \sim q \wedge \sim r) \vee$
$(p \wedge q \wedge r)$

\mathbf{p}	\mathbf{q}	\mathbf{r}	output
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- Outputs 1 if and only if the truth table outputs 1 !

How do we combine those simple formulae?

$(\sim p \wedge \sim q \wedge \sim r)$
$(\sim p \wedge q \wedge r)$
$(p \wedge \sim q \wedge \sim r) \bigvee$
$(p \wedge q \wedge r)$

\mathbf{p}	\mathbf{q}	\mathbf{r}	output
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- Outputs 1 if and only if the truth table outputs 1 !
- We want to do this in hardware!

Logical gates

- The smallest pieces of hardware that we will examine are called logical gates.
- Most gates for this course will take bits as inputs and will emit one bit as output. (Not all gates have this property)

- Those gates can connect to each other in various different ways in order to create more complex circuits

Our first gate

- This gate is known as the inverter.
- It corresponds exactly to the negation operation in propositional logic!
- Where 1, set True.
- Where 0, set False

Our second gate

\boldsymbol{p}	\boldsymbol{q}	\boldsymbol{r}
0	0	0
0	1	0
1	0	0
1	1	1

- Corresponds to:

Our second gate (AND gate)

\boldsymbol{p}	\boldsymbol{q}	\boldsymbol{r}
0	0	0
0	1	0
1	0	0
1	1	1

- Corresponds to:

Our second gate (AND gate)

- Corresponds to:

Our third gate (OR gate)

\boldsymbol{p}	\boldsymbol{q}	\boldsymbol{r}
0	0	0
0	1	1
1	0	1
1	1	1

- Corresponds to logical disjunction (OR)

Our fourth and fifth gate (NAND and NOR gate)

\boldsymbol{p}	\boldsymbol{q}	\boldsymbol{r}
0	0	1
0	1	1
1	0	1
1	1	0

\boldsymbol{p}	\boldsymbol{q}	\boldsymbol{r}
0	0	1
0	1	0
1	0	0
1	1	0

Exercises

- Which boolean function does this circuit correspond to?

Exercises

- Which boolean function does this circuit correspond to?

$(p \wedge s) \vee r$

Exercises

- And this?

Exercises

- And this?

$$
(m \wedge n) \vee(\sim(k \wedge l))
$$

And this?

And this?

$((r \wedge q \wedge s) \vee(k \wedge \ell)) \wedge((r \wedge q \wedge s) \vee m))$

And this?

Can we make this circuit cheaper?

$((r \wedge q \wedge s) \vee(k \wedge \ell)) \wedge((r \wedge q \wedge s) \vee m))$

Simplifying the circuit...

$$
\begin{aligned}
& ((r \wedge q \wedge s) \vee(k \wedge \ell)) \wedge((r \wedge q \wedge s) \vee m)) \\
\equiv & (r \wedge q \wedge s) \vee((k \wedge \ell) \wedge m)
\end{aligned}
$$

New circuit: Three gates

Old circuit: Five gates

Exercises

1. Which logical expression is computed by the following circuit?

Exercises

1. Which logical expression is computed by the following circuit?
2. Simplify the circuit as much as possible!

Coming back to our original formula...

$$
(\sim p \wedge \sim q \wedge \sim r) \vee(\sim p \wedge q \wedge r) \vee(p \wedge \sim q \wedge \sim r) \vee(p \wedge q \wedge r)
$$

Coming back to our original formula...

$$
(\sim p \wedge \sim q \wedge \sim r) \vee(\sim p \wedge q \wedge r) \vee(p \wedge \sim q \wedge \sim r) \vee(p \wedge q \wedge r)
$$

- For each small formula we have a circuit, and we will combine with a 4-input OR gate!

Coming back to our original formula...

$(\sim p \wedge \sim q \wedge \sim r) \vee(\sim p \wedge q \wedge r) \vee(p \wedge \sim q \wedge \sim r) \vee(p \wedge q \wedge r)$

- For each small formula we have a circuit, and we will combine with a 4-input OR gate!

Circuit 1

$$
(\sim p \wedge \sim q \wedge \sim r)
$$

Circuit 2

$$
(\sim p \wedge q \wedge r)
$$

Circuit 3

$$
(p \wedge \sim q \wedge \sim r)
$$

Circuit 4

$$
(p \wedge q \wedge r)
$$

Building Adder Circuits

- We want to build circuits that add arbitrarily large binary numbers.
- E.g

Half-Adder

- A half-adder is a circuit that adds two bits together!

$$
\begin{array}{r}
X \\
+Y \\
\hline C S
\end{array}
$$

- (Remember: C is the carry bit.)
- Let's try to build a circuit that computes both S and C !

Truth table

\mathbf{X}	\mathbf{Y}	\mathbf{S}	\mathbf{C}
0	0	$?$	$?$
0	1	$?$	$?$
1	0	$?$	$?$
1	1	$?$	$?$

Truth table

\mathbf{X}	\mathbf{Y}	\mathbf{S}	\mathbf{C}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Truth table

\mathbf{X}	\mathbf{Y}	\mathbf{S}	\mathbf{C}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Truth table

\mathbf{X}	\mathbf{Y}	\mathbf{S}	\mathbf{C}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

XOR Gate
("Exclusive OR)

Making XOR cheaper

- First, let's convince ourselves that

$$
(x \oplus y) \equiv(x \wedge(\sim y)) \vee((\sim x) \wedge y) \equiv(x \vee y) \wedge(\sim(x \wedge y))
$$

Making XOR cheaper

- First, let's convince ourselves that

$$
(x \oplus y) \equiv(x \wedge(\sim y)) \vee((\sim x) \wedge y) \equiv(x \vee y) \wedge(\sim(x \wedge y))
$$

Making XOR cheaper

- First, let's convince ourselves that

$$
(x \oplus y) \equiv(x \wedge(\sim y)) \vee((\sim x) \wedge y) \equiv(x \vee y) \wedge(\sim(x \wedge y))
$$

Making XOR cheaper

- First, let's convince ourselves that

$$
(x \oplus y) \equiv(x \wedge(\sim y)) \vee((\sim x) \wedge y) \equiv(x \vee y) \wedge(\sim(x \wedge y))
$$

From five gates to four!

Optimizing Half Adder

- We can now optimize the Half Adder.
- We won't just use simplified XOR, but also leverage simplified XOR to re-use the AND gate used to compute the carry bit C !

Half Adder Abstraction

4 gates, instead of 6 for the previous one!

Half Adder Abstraction

Full-Adder

- Now, let's consider the complete case, where we want to build a circuit that computes the sum of two 2-digit binary numbers:

$$
\begin{array}{r}
\mathrm{PQ} \\
+\mathrm{WX} \\
\hline \mathrm{CS} \mathrm{~S}_{1} \mathrm{~S}_{2}
\end{array}
$$

- To do this, we also need the ability to add 3 digits, because:

Full-Adder

- Now, let's consider the complete case, where we want to build a circuit that computes the sum of two 2-digit binary numbers:

$$
\begin{array}{r}
\mathrm{PQ} \\
+\mathrm{WX} \\
\hline \mathrm{CS} \mathrm{~S}_{1} \mathrm{~S}_{2}
\end{array}
$$

- To do this, we also need the ability to add 3 digits, because:

We could do the truth table.... $\begin{gathered}p,+w x \\ +w x\end{gathered}$

CS1 S2

P	Q	W	X	C	S_{1}	S_{2}
0	0	0	0			
0	0	0	1			
0	0	1	0			
0	0	1	1			
0	1	0	0			
0	1	0	1			
0	1	1	0			
0	1	1	1			
1	0	0	0			
1	0	0	1			
1	0	1	0			
1	0	1	1			
1	1	0	0			
1	1	0	1			
1	1	1	0			
1	1	1	1			

We could do the truth table.... $\begin{gathered}p, \underline{w x} \\ +\underline{w x}\end{gathered}$
CS1 S2

P	Q	W	X	C	S_{1}	S_{2}
0	0	0	0			
0	0	0	1			
0	0	1	0			
0	0	1	1			
0	1	0	0	consuming and we are all busy peopl		
0	1	0	1			
0	1	1	0			
0	1	1	1			
1	0	0	0			
1	0	0	1			
1	0	1	0			
1	0	1	1			
1	1	0	0			
1	1	0	1			
1	1	1	0			
1	1	1	1			

Constructing a Full-Adder in another way

- We need to build a circuit that computes the sum of 3 digits, e.g $P+Q$ $+\mathrm{R}$
- Step 1: Compute $\begin{gathered}\mathrm{P} \\ +\mathrm{Q} \\ \mathrm{C}_{1} \mathrm{~S}_{1}\end{gathered}$ with a half-adder:

Constructing a Full Adder

S_{1}

- Step 2: Compute + R with another half-adder:
$\mathrm{C}_{2} \mathrm{~S}$

Constructing a full-adder

- Step 3: Combine C_{1} and C_{2} with an OR gate to yield the final carry bit C.

Constructing a full-adder

- Step 3: Combine C_{1} and C_{2} with an OR gate to yield the final carry bit C.
- Why did we choose an OR gate to combine the "intermediate" carries C_{1} and C_{2} ?

Constructing a full-adder

- Step 3: Combine C_{1} and C_{2} with an OR gate to yield the final carry bit C.

Abstraction time!

Full Adder Black Box

- 3 inputs, 2 outputs

2-bit adder

- However, we still have not solved our original problem, which is to construct a circuit that adds 2-bit numbers!

$$
\begin{array}{r}
\mathrm{PQ} \\
+\mathrm{WX} \\
\hline \mathrm{CS} \mathrm{~S}_{1} \mathrm{~S}_{2}
\end{array}
$$

- So, we need a circuit that takes 4 inputs and emits 3 outputs:

Constructing a 2-bit adder

- Step 1: Take care of the right-most column with a half-adder:

Constructing a 2-bit adder

- Step 1: Take care of the right-most column with a half-adder:

- Step 2 (and final): Connect Half-Adder and new inputs to Full-adder appropriately to produce final circuit.

Constructing a 2-bit adder

- Step 1: Take care of the right-most column with a half-adder:

- Step 2 (and final): Connect Half-Adder and new inputs to Full-adder appropriately to produce final circuit.

Constructing a 3-bit adder (messy)

Constructing a 3-bit adder (neat)

Constructing an n-bit adder (messy)

Constructing an n-bit adder (neat)

Other numeric functions

- Addition (have done)
- Multiplication
- Division
- Primality test (test whether a number is prime)
- There are circuits for all of these!
- Computers actually work this way at the base level: they consist of gates.

Fun exercise

- Input: number in binary
- Output: ??? (you will tell me later)

$\boldsymbol{B}_{\mathbf{1}}$	$\boldsymbol{B}_{\mathbf{0}}$	$\boldsymbol{U}_{\mathbf{2}}$	$\boldsymbol{U}_{\mathbf{1}}$	$\boldsymbol{U}_{\mathbf{0}}$
0	0	0	0	0
0	1	0	0	1
1	0	0	1	1
1	1	1	1	1

First micro-circuit

$\boldsymbol{B}_{\mathbf{1}}$	$\boldsymbol{B}_{\mathbf{0}}$	$\boldsymbol{U}_{\mathbf{2}}$	$\boldsymbol{U}_{\mathbf{1}}$	$\boldsymbol{U}_{\mathbf{0}}$
0	0	0	0	0
0	1	0	0	1
1	0	0	1	1
1	1	1	1	1
$U_{2}=B_{1} \wedge \boldsymbol{B}_{0}$				

Second micro-circuit

$\boldsymbol{B}_{\mathbf{1}}$	$\boldsymbol{B}_{\mathbf{0}}$	$\boldsymbol{U}_{\mathbf{2}}$	$\boldsymbol{U}_{\mathbf{1}}$	$\boldsymbol{U}_{\mathbf{0}}$
0	0	0	0	0
0	1	0	0	1
1	0	0	1	1
1	1	1	1	1

$$
\boldsymbol{U}_{\mathbf{1}}=\left(\boldsymbol{B}_{\mathbf{1}} \wedge \sim \boldsymbol{B}_{\mathbf{0}}\right) \vee\left(\boldsymbol{B}_{\mathbf{1}} \wedge \boldsymbol{B}_{\mathbf{0}}\right)
$$

Second micro-circuit

$\boldsymbol{B}_{\mathbf{1}}$	$\boldsymbol{B}_{\mathbf{0}}$	$\boldsymbol{U}_{\mathbf{2}}$	$\boldsymbol{U}_{\mathbf{1}}$	$\boldsymbol{U}_{\mathbf{0}}$
0	0	0	0	0
0	1	0	0	1
1	0	0	1	1
1	1	1	1	1

$\boldsymbol{U}_{\mathbf{1}}=\left(\boldsymbol{B}_{\mathbf{1}} \wedge \sim \boldsymbol{B}_{\mathbf{0}}\right) \vee\left(\boldsymbol{B}_{\mathbf{1}} \wedge \boldsymbol{B}_{\mathbf{0}}\right)=\boldsymbol{B}_{\mathbf{1}}$
(from distributive law of conjunction over disjunction!)

Third micro-circuit

$\boldsymbol{B}_{\mathbf{1}}$	$\boldsymbol{B}_{\mathbf{0}}$	$\boldsymbol{U}_{\mathbf{2}}$	$\boldsymbol{U}_{\mathbf{1}}$	$\boldsymbol{U}_{\mathbf{0}}$
0	0	0	0	0
0	1	0	0	1
1	0	0	1	1
1	1	1	1	1

$$
\boldsymbol{U}_{\mathbf{0}}=\left(\sim \boldsymbol{B}_{\mathbf{1}} \wedge \boldsymbol{B}_{\mathbf{0}}\right) \vee\left(\boldsymbol{B}_{\mathbf{1}} \wedge \sim \boldsymbol{B}_{\mathbf{0}}\right) \vee\left(\boldsymbol{B}_{\mathbf{1}} \wedge \boldsymbol{B}_{\mathbf{0}}\right)
$$

Third micro-circuit

$\boldsymbol{B}_{\mathbf{1}}$	$\boldsymbol{B}_{\mathbf{0}}$	$\boldsymbol{U}_{\mathbf{2}}$	$\boldsymbol{U}_{\mathbf{1}}$	$\boldsymbol{U}_{\mathbf{0}}$
0	0	0	0	0
0	1	0	0	1
1	0	0	1	1
1	1	1	1	1

$U_{0}=\left(\sim B_{1} \wedge B_{0}\right) \vee\left(B_{1} \wedge \sim B_{0}\right) \vee\left(B_{1} \wedge B_{0}\right)=\left(\sim B_{1} \wedge B_{0}\right) \vee B_{1}=\left(\sim B_{1} \vee B_{1}\right) \wedge\left(B_{0} \vee B_{1}\right)=B_{0} \vee B_{1}$

B_{1}
 B_{0}

STOP

