START
RECORDING

Circults

CMSC250

Circuilts

 We can build circuits for

* Every logical operation we have learned (~,A,V) maps
straightforwardly to a tiny piece of hardware called a logical gate.

* These gates connect to each other to make arbitrarily complicated
circuits!

From a truth table to a formula

output

From a truth table to a formula

output

R(RP|IP|PIO|lOC(OC|OC|T
RP[(P|O|O|FR, |, |[O|OC|L

Rrlo|lr|lo|lr|lo|lr|o]|=

R | OO ||k |O|O

* Let us focus entirely on the rows that output 1!

T - t
e Focusing on the 15 row...

p q r output

0 0 0 1

* Write a formula thatis’1’ only on inputs p=0,q =0, r=0.

| P | q | [| output |
0 0 1 0
0 1 0 0

Focusing on the 1t row...

p q r output

0 0 0 1

* Write a simple formula thatis’1’ only on inputs p=0,q =0, r=0.

~p N ~qN~T

Focusing on the 4t row...

p r output
0 1 1 1

e Same deal

Focusing on the 4t row...

p r output
0 1 1 1
e Same deal

~pANQAT

uuuuuu

Focusing on the 5t row...

p q r output
1 0 0 1

pA~qgN\~T

Focusing on the 8t row...

output

PpAGAT

How do we combine those simple formulae?

~pA~qAN\~T
~pAqAT

pA~qAN~T

pAGAT

How do we combine those simple formulae?

p q r output
(~p A~q A ~1) - . . :
0 0 1 0
(~pAgqAT) 0 ! 0 0
0 1 1 1
1 0 0 1
(p A~q N~T) . 0 1 0
1 1 0 0
(PAgAT) : : : 1

e Qutputs 1if and only if the truth table outputs 1!

How do we combine those simple formulae?

p q r output
(~p A~q A ~1) - . . :
0 0 1 0
(~pAgqAT) 0 ! 0 0
0 1 1 1
1 0 0 1
(p A~q N~T) . 0 1 0
1 1 0 0
(PAgAT) : : : 1

e Qutputs 1if and only if the truth table outputs 1!

Logical gates

* The smallest pieces of hardware that we will examine are called
logical gates.

* Most gates for this course will take as inputs and will emit one bit
as output. (Not all gates have this property)

I .

I,
In

* Those gates can connect to each other in various different ways in

order to create more complex circuits

Our first gate

out A

out

* This gate is known as the inverter.

* |t corresponds exactly to the negation operation in propositional logic!
e Where 1, set True.
* Where O, set False

* Corresponds to:

Our second gate

RlRr|lOlOI

=[O -=]| O I8N

Rl O|lO|lO | <=

Conjunction

Our second gate (AND gate)

RlRr|lOlOI
R | Ol | OIS

Rl O|lO|lO | <=

* Corresponds to:

Conjunction

Our second gate (AND gate)

/

/O

r

RlRr|lOlOI
R | Ol | OIS

RO | O

* Corresponds to:

Conjunction

Our third gate (OR gate)

ﬁ
R Lol

RO~ | O

R (R |PR,|O|=N

e Corresponds to logical disjunction (OR)

Our fourth and fifth gate (NAND and NOR gate)

p q r

p 0 0 1
- 0 1 1

1 0 1

1 1 1 0

ﬁ
Rr|lRr|lOoOlOoT
R | Ol | O |8
OO0 |0 | FrRr | =

Exercises

* Which boolean function does this circuit correspond to?

Exercises

* Which boolean function does this circuit correspond to?

Exercises

e And this?

}
e

Exercises

e And this?

P
-

(mAn)VvV(~ (kALD))

And this?

) >—
) o—

VAR

And this?

((rAgAs)Vm))
\(r/\q/\'s) Dﬁ
_/ (rAgAs)V(kKAD))
A((rAgAs)Vvm))
Y

Z):: (ragAs)V(ka?t)
S/

(rAgAs)V(EAL)D)AN((rAgAs)Vm))

And this?

Can we make this
circuit cheaper?

((rAgAs)vm))
\(r/\q/\'s) Dﬁ
_/ (rAgAs)V(kKAD))
A((rAgAs)Vvm))
Y

Z):: (ragAs)V(ka?t)
S/

(rAgAs)V(EAL)D)AN((rAgAs)Vm))

Simplitying the circuit...

((rAgAs)VEAL)AWrAgAs)Vm))
(ragns)V((m)

.
— D

Old circuit: Five gates

?
Ur|

: —
P

New circuit: Three gates

Exercises

1. Which logical expression is computed by the following circuit?

D
—) -
-

>0

Exercises

1. Which logical expression is computed by the following circuit?
2. Simplify the circuit as much as possible!

' \
——

iglf=pt
_

>0

Coming back to our original formula...

(~pA~gA~1) \/ (~pAqQAT) N (DA~qA~1) N (DAGAT)

Coming back to our original formula...

(~pA~gA~1) \/ (~pAqQAT) N (DA~qA~1) N (DAGAT)

* For each small formula we have a circuit, and we will combine with a 4-input OR gate!

Coming back to our original formula...

(~pA~gA~1) \/ (~pAqQAT) N (DA~qA~1) N (DAGAT)

* For each small formula we have a circuit, and we will combine with a 4-input OR gate!

—

Circuit 1

(~pA~q N~T)

{>°*
-
{>o_

Circuit 2

(~pAqAT)

Do__

Circuit 3

(b A~q A ~T1)

Y

Circuit 4

(PAqAT)

Building Adder Circuits

 We want to build circuits that add arbitrarily large binary numbers.

10011001
+00110011 :}> v

11001100 —— Output

*E.g

Half-Adder

* A half-adder is a circuit that adds together!

X
+Y
CS
 (Remember: C is the carry bit.)

* Let’s try to build a circuit that computes both S and C!

Truth table

Truth table

Truth table

Truth table

Y S C
0 0 0
1 1 0
0 1 0
1 0 1
' XOR Gate

(“Exclusive OR)

Making XOR cheaper

 First, let’s convince ourselves that

xBY=x AV AY)=(xcvy) A(~(xAY))

Making XOR cheaper

 First, let’s convince ourselves that

xBY=xACEIV(~)AY) = (xVy)A(~(xAY)

¥
K
g

Making XOR cheaper

 First, let’s convince ourselves that

xBY=xACEIV(~)AY) = (xVy)A(~(xAY)

:)D_}}C'FT) O

. D4>J—D

Making XOR cheaper

 First, let’s convince ourselves that
xBY)=x A~ V((~0)AY) = (xVy)A(~(x AY))

From five gates to four!

:)D’};—FT) O

. D4>J—D_

Optimizing Half Adder

 We can now the Half Adder.

* We won’t just use simplified XOR, but also leverage simplified XOR to
re-use the |

D— -

Half Adder Abstraction

——

4 gates, instead of 6 for the previous one!

Half Adder Abstraction

Half-Adder

Full-Adder

* Now, let’s consider the complete case, where we want to build a
circuit that computes the sum of two 2-digit binary numbers:

PQ
+ W X
CS1S2

* To do this, we also need the ability to add 3 digits, because:

N

CS152

Full-Adder

* Now, let’s consider the complete case, where we want to build a
circuit that computes the sum of two 2-digit binary numbers:

PQ
+ W X
CS1S2

* To do this, we also need the ability to add 3 digits, because:

0 We will call a circuit
that adds 3 bits a full
+ X adder

N

CS152

+ W X

We could do the truth table....

+ W X

We could do the truth table....

But it’s time
consuming and we

are all busy people |

Constructing a Full-Adder in another way

* We need to build a circuit that computes the sum of 3 digits, e.g P + Q
+ R

P
+ Q Half-Adder

* Step 1: Compute ,5, with a half-adder:

Constructing a Full Adder

) J—

Q—

S1
* Step 2: Compute + R
Ca2S

Half-Adder

—

_S1

with another half-adder:

Half-Adder

Half-Adder

(7
S

Constructing a full-adder

Cy
P —— Half-Adder ®_ C
0 — — s c;
R | Half-Adder S

: Combine C; and C, with an OR gate to yield the final carry bit

Constructing a full-adder

C1
P Half-Adder C
Q — —151 C2
R | Half-Adder S

: Combine C; and C, with an OR gate to yield the final carry bit
C.

* Why did we choose an OR gate to combine the “intermediate”
carries C; and C,?

Constructing a full-adder

Half-Adder

: |
| l
| l
l
I —— =
| P Half-Adder D—C :
: Q o 51 Cz l
| l
| l
| l
| l
| l

: Combine C; and C, with an OR gate to yield the final carry bit

Abstraction
time!

Full Adder Black Box

* 3 inputs, 2 outputs

Full Adder

2-bit adder

 However, we still have not solved our original problem, which is to
construct a circuit that adds 2-bit numbers!

PQ
+ W X
CS1S2

* So, we need a circuit that takes 4 inputs and emits 3 outputs:

Q C

4 e 2-bit adder 51

g —s,

W—

Constructing a 2-bit adder

 Step 1: Take care of the right-most column with a half-adder:

C1

PQ 0 5,
+ W X % Half-Adder
CS1S Cq

Constructing a 2-bit adder

e Step 1: Take care of the right-most column with a half-adder:

Y 52
P Q X Half-Adder
+ W X |
P S
CS152 % Full-Adder C

 Step 2 (and final): Connect Half-Adder and new inputs to Full-adder
appropriately to produce final circuit.

Constructing a 2-bit adder

» Step 1: Take care of the right-most column with a half-adder:

0 2-bit adder S,
P Q X Half-Adder
+ W X \
P S
CS152 % Full-Adder C

e Step 2 (and final): Connect Half-Adder and new inputs to Full-adder
appropriately to produce

APQ
+ BWX
5,5, S5;

Constructing a 3-bit adder (messy)

Half-Adder

Full-Adder

¢
X
P
w
A
B

Full-Adder

Constructing a 3-bit adder (neat)

Q¢ S,
AP X
+ BW p 2-bit adder S
515, W 2
A
- Sl
B Full-Adder

HA

Constructing an n-bit adder (messy)

FA

51
S,
e We have full adders
* How many XOR gates do we have?
Cn—z
Sn—1
FA
Cn-1
Sn
FA C,

Constructing an n-bit adder (neat)

51
52
(n-1)-bit adder
Sn-1
Cn-1 ‘
Sn
FA C,

Other numeric functions

e Addition (have done)

* Multiplication

* Division

* Primality test (test whether a number is prime)

* There are circuits for all of these!
 Computers actually work this way at the base level: they consist of gates.

Fun exercise

* Input: number in binary

e Qutput: ??7? (you will tell me later)
B, B, U, U, Uo
0 0 0 0 0
0 1 0 0 1
1 0 0 1 1
1 1 1 1 1

v

> . . U
B Circuit 1
0 > UO

v \ 4

First micro-circuit

vy
[N
vy
(=)
S
N
-
p—
S
(==

R | = |lOo|O
R |lo|lr~r]|O
L |lo|lo|o
o
Rl |O

Second micro-circuit

B, B, U U, U

0 0 0
0 1 0

Uy = (BiA~ By) V (B1 ABy)

N

R | O[O | O

0
0
1
1
1

Second micro-circuit

B, B, U, U, U,
0 0

0 1 0 0 1

0 1

1 1

Uy = (B1A~ Bo) V (B1 ABy) = B,

(from distributive law of conjunction over disjunction!)

Bl =U1

Third micro-circuit

B, B, U, U, U,
0 0 0 0 0
0 1 0 0 1
1 0 0 1 1
1 1 1 1 1

Up=(~BiABy)V (B1 A~ By)V (B1 ABy)

Third micro-circuit

B4 By U, U, Uy
)1\ 0 0 A 0
0 /'1\ 0 0 1
1 [o 0 1 1
1 \ 1/ 1 1 1
N N
UO == ("’ Bl/\ Bo) V (Bl N~ Bo) V (Bl ABMBlA Bo) VBl == ("’ Bl VBl) N\ (B()V Bl) == BO V Bl

B4
B

. Uy

0

Final circuit

STOP
RECORDING

