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Circuits

• We can build circuits for addition, multiplication, division, bit 
shifting…

• Every logical operation we have learned (~,∧,∨) maps 
straightforwardly to a tiny piece of hardware called a logical gate.

• These gates connect to each other to make arbitrarily complicated 
circuits!



From a truth table to a formula

p q r output

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1



From a truth table to a formula

p q r output

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

• Let us focus entirely on the rows that output 1!



Focusing on the 1st row…

p q r output

0 0 0 1

• Write a formula that is ’1’ only on inputs p =0, q = 0, r = 0.

p q r output

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1



Focusing on the 1st row…

p q r output

0 0 0 1

• Write a simple formula that is ’1’ only on inputs p =0, q = 0, r = 0.

~𝑝 ∧ ~𝑞 ∧ ~𝑟

p q r output

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1



Focusing on the 4th row…

p q r output

0 1 1 1

• Same deal

p q r output

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1



Focusing on the 4th row…

p q r output

0 1 1 1

• Same deal

~𝑝 ∧ 𝑞 ∧ 𝑟

p q r output

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1



Focusing on the 5th row…

p q r output

1 0 0 1

𝑝 ∧ ~𝑞 ∧ ~𝑟

p q r output

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1



Focusing on the 8th row…

p q r output

1 1 1 1

𝑝 ∧ 𝑞 ∧ 𝑟

p q r output

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1



How do we combine those simple formulae?

𝑝 ∧ 𝑞 ∧ 𝑟

𝑝 ∧ ~𝑞 ∧ ~𝑟

~𝑝 ∧ 𝑞 ∧ 𝑟

~𝑝 ∧ ~𝑞 ∧ ~𝑟



How do we combine those simple formulae?

(𝑝 ∧ 𝑞 ∧ 𝑟)

(𝑝 ∧ ~𝑞 ∧ ~𝑟)

(~𝑝 ∧ 𝑞 ∧ 𝑟)

(~𝑝 ∧ ~𝑞 ∧ ~𝑟) ∨

∨

∨

• Outputs 1 if and only if the truth table outputs 1! 

p q r output

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1



How do we combine those simple formulae?

(𝑝 ∧ 𝑞 ∧ 𝑟)

(𝑝 ∧ ~𝑞 ∧ ~𝑟)

(~𝑝 ∧ 𝑞 ∧ 𝑟)

(~𝑝 ∧ ~𝑞 ∧ ~𝑟) ∨

∨

∨

• Outputs 1 if and only if the truth table outputs 1!
• We want to do this in hardware!

p q r output

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1



Logical gates

• The smallest pieces of hardware that we will examine are called 
logical gates.

• Most gates for this course will take bits as inputs and will emit one bit
as output. (Not all gates have this property)

• Those gates can connect to each other in various different ways in 
order to create more complex circuits

Gate

𝐼1
𝐼2

𝐼𝑛
𝑂𝑢𝑡



Our first gate

𝑨 𝒐𝒖𝒕

0 1

1 0

• This gate is known as the inverter.
• It corresponds exactly to the negation operation in propositional logic!

• Where 1, set True.
• Where 0, set False

A out



Our second gate

𝑝

𝑞

𝑟

𝒑 𝒒 𝒓

0 0 0

0 1 0

1 0 0

1 1 1

• Corresponds to:

Conjunction Disjunction



Our second gate (AND gate)

𝑝

𝑞

𝑟

𝒑 𝒒 𝒓

0 0 0

0 1 0

1 0 0

1 1 1

• Corresponds to:

Conjunction Disjunction



Our second gate (AND gate)

𝑝

𝑞

𝑟

𝒑 𝒒 𝒓

0 0 0

0 1 0

1 0 0

1 1 1

• Corresponds to:

Conjunction Disjunction



Our third gate (OR gate)

𝑝

𝑞

𝑟

𝒑 𝒒 𝒓

0 0 0

0 1 1

1 0 1

1 1 1

• Corresponds to logical disjunction (OR)



Our fourth and fifth gate (NAND and NOR gate)

𝑝

𝑞

𝑟

𝒑 𝒒 𝒓

0 0 1

0 1 0

1 0 0

1 1 0

𝑝

𝑞

𝑟

𝒑 𝒒 𝒓

0 0 1

0 1 1

1 0 1

1 1 0



Exercises

• Which boolean function does this circuit correspond to?

𝑝
𝑠

𝑟 𝑞



Exercises

• Which boolean function does this circuit correspond to?

𝑝
𝑠

𝑟 𝑞

𝑝 ∧ 𝑠 ∨ 𝑟



Exercises

• And this?



Exercises

• And this?

𝑚 ∧ 𝑛 ∨ (∼ 𝑘 ∧ 𝑙 )



And this?



And this?

( 𝑟 ∧ 𝑞 ∧ 𝑠 ∨ 𝑘 ∧ ℓ ) ∧ ( 𝑟 ∧ 𝑞 ∧ 𝑠 ∨ 𝑚))

𝑟 ∧ 𝑞 ∧ 𝑠

𝑘 ∧ ℓ

( 𝑟 ∧ 𝑞 ∧ 𝑠 ∨ 𝑚))

𝑟 ∧ 𝑞 ∧ 𝑠 ∨ 𝑘 ∧ ℓ

𝑟 ∧ 𝑞 ∧ 𝑠 ∨ 𝑘 ∧ ℓ

∧ ( 𝑟 ∧ 𝑞 ∧ 𝑠 ∨ 𝑚))



And this?

( 𝑟 ∧ 𝑞 ∧ 𝑠 ∨ 𝑘 ∧ ℓ ) ∧ ( 𝑟 ∧ 𝑞 ∧ 𝑠 ∨ 𝑚))

𝑟 ∧ 𝑞 ∧ 𝑠

𝑘 ∧ ℓ

( 𝑟 ∧ 𝑞 ∧ 𝑠 ∨ 𝑚))

𝑟 ∧ 𝑞 ∧ 𝑠 ∨ 𝑘 ∧ ℓ

𝑟 ∧ 𝑞 ∧ 𝑠 ∨ 𝑘 ∧ ℓ

∧ ( 𝑟 ∧ 𝑞 ∧ 𝑠 ∨ 𝑚))

Can we make this 
circuit cheaper?



Simplifying the circuit…

( 𝑟 ∧ 𝑞 ∧ 𝑠 ∨ 𝑘 ∧ ℓ ) ∧ ( 𝑟 ∧ 𝑞 ∧ 𝑠 ∨ 𝑚))
≡ 𝑟 ∧ 𝑞 ∧ 𝑠 ∨ ((𝑘 ∧ ℓ) ∧ 𝑚)

New circuit: Three gates Old circuit: Five gates



Exercises

1. Which logical expression is computed by the following circuit?



Exercises

1. Which logical expression is computed by the following circuit?

2. Simplify the circuit as much as possible!



Coming back to our original formula…

(𝑝 ∧ 𝑞 ∧ 𝑟)(𝑝 ∧ ~𝑞 ∧ ~𝑟)(~𝑝 ∧ 𝑞 ∧ 𝑟)(~𝑝 ∧ ~𝑞 ∧ ~𝑟) ∨ ∨ ∨



(𝑝 ∧ 𝑞 ∧ 𝑟)(𝑝 ∧ ~𝑞 ∧ ~𝑟)(~𝑝 ∧ 𝑞 ∧ 𝑟)(~𝑝 ∧ ~𝑞 ∧ ~𝑟) ∨ ∨ ∨

• For each small formula we have a circuit, and we will combine with a 4-input OR gate!

Coming back to our original formula…



(𝑝 ∧ 𝑞 ∧ 𝑟)(𝑝 ∧ ~𝑞 ∧ ~𝑟)(~𝑝 ∧ 𝑞 ∧ 𝑟)(~𝑝 ∧ ~𝑞 ∧ ~𝑟) ∨ ∨ ∨

• For each small formula we have a circuit, and we will combine with a 4-input OR gate!

Circuit 1

Circuit 2

Circuit 3

Circuit 4

Coming back to our original formula…



Circuit 1

(~𝑝 ∧ ~𝑞 ∧ ~𝑟)

𝑝

𝑞

𝑟



Circuit 2

𝑝

𝑞

𝑟

(~𝑝 ∧ 𝑞 ∧ 𝑟)



Circuit 3

(𝑝 ∧ ~𝑞 ∧ ~𝑟)

𝑝

𝑞

𝑟



Circuit 4

𝑝

𝑞

𝑟

(𝑝 ∧ 𝑞 ∧ 𝑟)



Building Adder Circuits

• We want to build circuits that add arbitrarily large binary numbers.

• E.g

10011001

+00110011 

11001100 

Inputs

Output



Half-Adder

• A half-adder is a circuit that adds two bits together!

𝑋
+ 𝑌
𝐶 𝑆

• (Remember: 𝐶 is the carry bit.)

• Let’s try to build a circuit that computes both S and C!



Truth table

X Y S C

0 0 ? ?

0 1 ? ?

1 0 ? ?

1 1 ? ?



Truth table

X Y S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1



Truth table

X Y S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

X

Y

C

S



Truth table

X Y S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

X

Y
S

XOR Gate 
(“Exclusive OR)

X

Y

C

S



Making XOR cheaper 

• First, let’s convince ourselves that

(𝑥 ⊕ 𝑦) ≡ (𝑥 ∧ ~𝑦 ) ∨ ~𝑥 ∧ 𝑦 ≡ (𝑥 ∨ 𝑦) ∧ (~ 𝑥 ∧ 𝑦 )



Making XOR cheaper 

• First, let’s convince ourselves that

(𝑥 ⊕ 𝑦) ≡ (𝑥 ∧ ~𝑦 ) ∨ ~𝑥 ∧ 𝑦 ≡ (𝑥 ∨ 𝑦) ∧ (~ 𝑥 ∧ 𝑦 )

≡
𝑥

𝑦

𝑥

𝑦
≡



Making XOR cheaper 

• First, let’s convince ourselves that

(𝑥 ⊕ 𝑦) ≡ (𝑥 ∧ ~𝑦 ) ∨ ~𝑥 ∧ 𝑦 ≡ (𝑥 ∨ 𝑦) ∧ (~ 𝑥 ∧ 𝑦 )

≡
𝑥

𝑦

𝑥
𝑦



Making XOR cheaper 

• First, let’s convince ourselves that

(𝑥 ⊕ 𝑦) ≡ (𝑥 ∧ ~𝑦 ) ∨ ~𝑥 ∧ 𝑦 ≡ (𝑥 ∨ 𝑦) ∧ (~ 𝑥 ∧ 𝑦 )

≡
𝑥

𝑦

From five gates to four!
𝑥
𝑦



Optimizing Half Adder

• We can now optimize the Half Adder.

• We won’t just use simplified XOR, but also leverage simplified XOR to 
re-use the AND gate used to compute the carry bit 𝐶!

𝑋

𝑌
𝐶 = 𝑋 ∧ 𝑌

𝑆 = 𝑋 ⊕ 𝑌 ≡
(𝑋 ∨ 𝑌) ∧ (~ 𝑋 ∧ 𝑌 )



Half Adder Abstraction

𝑋

𝑌
𝐶

𝑆

4 gates, instead of 6 for the previous one!



Half Adder Abstraction

𝑋

𝑌

𝐶

𝑆

Half-Adder



Full-Adder

• Now, let’s consider the complete case, where we want to build a 
circuit that computes the sum of two 2-digit binary numbers:

• To do this, we also need the ability to add 3 digits, because:

P Q

+ W X

C S1 S2

C1

P Q

+ W X

C S1 S2



Full-Adder

• Now, let’s consider the complete case, where we want to build a 
circuit that computes the sum of two 2-digit binary numbers:

• To do this, we also need the ability to add 3 digits, because:

P Q

+ W X

C S1 S2

C1

P Q

+ W X

C S1 S2

We will call a circuit 
that adds 3 bits a full 
adder



We could do the truth table….
P Q W X C S1 S2

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

P Q

+ W X

C S1 S2



We could do the truth table….
P Q W X C S1 S2

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

P Q

+ W X

C S1 S2

But it’s time 
consuming and we 
are all busy people



Constructing a Full-Adder in another way

• We need to build a circuit that computes the sum of 3 digits, e.g P + Q 
+ R

• Step 1: Compute                with a half-adder:

P

+ Q

C1S1

𝑃

𝑄

𝐶1

𝑆1

Half-Adder



Constructing a Full Adder

• Step 2: Compute                  with another half-adder: 

𝑃

𝑄

𝐶1

𝑆1

Half-Adder

S1

+ R

C2S 

𝑃

𝑄

𝐶1

𝑆1

Half-Adder

𝑅
Half-Adder

𝐶2

𝑆



Constructing a full-adder

• Step 3: Combine 𝐶1 and 𝐶2 with an OR gate to yield the final carry bit 
𝐶.

𝑃

𝑄

𝐶1

𝑆1

Half-Adder

𝑅
Half-Adder

𝐶2

𝑆

𝐶



Constructing a full-adder

• Step 3: Combine 𝐶1 and 𝐶2 with an OR gate to yield the final carry bit 
𝐶.

• Why did we choose an OR gate to combine the “intermediate”
carries 𝐶1 and 𝐶2? 

𝑃

𝑄

𝐶1

𝑆1

Half-Adder

𝑅
Half-Adder

𝐶2

𝑆

𝐶



Constructing a full-adder

• Step 3: Combine 𝐶1 and 𝐶2 with an OR gate to yield the final carry bit 
𝐶.

𝑃

𝑄

𝐶1

𝑆1

Half-Adder

𝑅
Half-Adder

𝐶2

𝑆

𝐶

Abstraction 
time!



Full Adder Black Box

• 3 inputs, 2 outputs

Full Adder
𝑃

𝑄

𝑅

𝑆

𝐶



2-bit adder

• However, we still have not solved our original problem, which is to 
construct a circuit that adds 2-bit numbers!

• So, we need a circuit that takes 4 inputs and emits 3 outputs:

P Q

+ W X

C S1 S2

2-bit adder

𝑄

𝑋
𝑃

𝑊
𝑆2

𝑆1

𝐶



Constructing a 2-bit adder

• Step 1: Take care of the right-most column with a half-adder:

C1

P Q

+ W X

C S1 S2

Half-Adder
𝑄

𝑋

𝑆2

𝐶1



Constructing a 2-bit adder

• Step 1: Take care of the right-most column with a half-adder:

• Step 2 (and final): Connect Half-Adder and new inputs to Full-adder
appropriately to produce final circuit.

C1

P Q

+ W X

C S1 S2

Half-Adder

𝑄

𝑋

𝑆2
𝐶1

𝑃

𝑊 Full-Adder
𝑆1

𝐶



Constructing a 2-bit adder

• Step 1: Take care of the right-most column with a half-adder:

• Step 2 (and final): Connect Half-Adder and new inputs to Full-adder
appropriately to produce final circuit.

C1

P Q

+ W X

C S1 S2

Half-Adder

𝑄

𝑋

𝑆2
𝐶1

𝑃

𝑊 Full-Adder
𝑆1

𝐶

2-bit adder



Constructing a 3-bit adder (messy)

C2 C1

A P Q

+ B W X

C3 S1S2 S3

Half-Adder

𝑄

𝑋
𝑆3

𝐶1

𝑃

𝑊 Full-Adder
𝑆2

𝐶2

𝐴

𝐵 Full-Adder
𝑆1
𝐶3



Constructing a 3-bit adder (neat)

C2 C1

A P Q

+ B W X

C3 S1S2 S3

𝑄

𝑋
𝑆3

𝑃

𝑊
𝑆2

𝐶2

𝐴

𝐵 Full-Adder
𝑆1
𝐶3

2-bit adder



Constructing an n-bit adder (messy)

⋮

𝐴1

𝐵1
𝐴2

𝐵2

𝐴𝑛−1

𝐵𝑛−1

𝐴𝑛

𝐵𝑛

HA
𝑆1

FA
𝑆2

𝐶1

𝐶2

⋮
𝐶𝑛−2

⋮

𝑆𝑛−1

𝐶𝑛−1

𝑆𝑛

𝐶𝑛

• We have 𝒏 − 𝟏 full adders
• How many XOR gates do we have?

FA

FA



Constructing an n-bit adder (neat)

⋮

𝐴1

𝐵1
𝐴2

𝐵2

𝐴𝑛−1

𝐵𝑛−1

𝐴𝑛

𝐵𝑛

𝑆1

𝑆2

⋮

𝑆𝑛−1
𝐶𝑛−1

𝑆𝑛

𝐶𝑛
FA

(n-1)-bit adder



Other numeric functions

• Addition (have done)

• Multiplication

• Division

• Primality test (test whether a number is prime)

• There are circuits for all of these!
• Computers actually work this way at the base level: they consist of gates.



Fun exercise

• Input: number in binary

• Output: ??? (you will tell me later)

𝑩𝟏 𝑩𝟎 𝑼𝟐 𝑼𝟏 𝑼𝟎

0 0 0 0 0

0 1 0 0 1

1 0 0 1 1

1 1 1 1 1

Circuit
𝐵1

𝐵0
𝑈1

𝑈0

𝑈2



First micro-circuit

𝑩𝟏 𝑩𝟎 𝑼𝟐 𝑼𝟏 𝑼𝟎

0 0 0 0 0

0 1 0 0 1

1 0 0 1 1

1 1 1 1 1

𝑼𝟐 = 𝑩𝟏 ∧ 𝑩𝟎

𝑩𝟏

𝑩𝟎
𝑼𝟐



Second micro-circuit

𝑩𝟏 𝑩𝟎 𝑼𝟐 𝑼𝟏 𝑼𝟎

0 0 0 0 0

0 1 0 0 1

1 0 0 1 1

1 1 1 1 1

𝑼𝟏 = (𝑩𝟏∧∼ 𝑩𝟎) ∨ (𝑩𝟏 ∧ 𝑩𝟎)



Second micro-circuit

𝑩𝟏 𝑩𝟎 𝑼𝟐 𝑼𝟏 𝑼𝟎

0 0 0 0 0

0 1 0 0 1

1 0 0 1 1

1 1 1 1 1

𝑼𝟏 = (𝑩𝟏∧∼ 𝑩𝟎) ∨ (𝑩𝟏 ∧ 𝑩𝟎) = 𝑩𝟏

(from distributive law of conjunction over disjunction!)

𝑩𝟏 𝑼𝟏



Third micro-circuit

𝑩𝟏 𝑩𝟎 𝑼𝟐 𝑼𝟏 𝑼𝟎

0 0 0 0 0

0 1 0 0 1

1 0 0 1 1

1 1 1 1 1

𝑼𝟎 = (∼ 𝑩𝟏∧ 𝑩𝟎) ∨ (𝑩𝟏 ∧∼ 𝑩𝟎) ∨ (𝑩𝟏 ∧ 𝑩𝟎)



Third micro-circuit

𝑩𝟏 𝑩𝟎 𝑼𝟐 𝑼𝟏 𝑼𝟎

0 0 0 0 0

0 1 0 0 1

1 0 0 1 1

1 1 1 1 1

𝑼𝟎 = (∼ 𝑩𝟏∧ 𝑩𝟎) ∨ (𝑩𝟏 ∧∼ 𝑩𝟎) ∨ (𝑩𝟏 ∧ 𝑩𝟎) = (∼ 𝑩𝟏∧ 𝑩𝟎) ∨ 𝑩𝟏 = (∼ 𝑩𝟏 ∨ 𝑩𝟏) ∧ (𝑩𝟎∨ 𝑩𝟏) = 𝑩𝟎 ∨ 𝑩𝟏

𝑩𝟏

𝑩𝟎

𝑼𝟎



Final circuit

𝑩𝟏

𝑩𝟎

𝑼𝟎

𝑼𝟏

𝑼𝟐

𝑩𝟏 𝑩𝟎 𝑼𝟐 𝑼𝟏 𝑼𝟎

0 0 0 0 0

0 1 0 0 1

1 0 0 1 1

1 1 1 1 1



STOP 
RECORDING


