Duplicator-Spoiler Games

Example of the Point of the Game

$$
a<b
$$

Example of the Point of the Game

$$
\begin{aligned}
& a<b \\
& L_{a}=\{1<2<\cdots<a\}
\end{aligned}
$$

Example of the Point of the Game

$$
\begin{aligned}
& a<b \\
& L_{a}=\{1<2<\cdots<a\} \\
& L_{b}=\{1<2<\cdots<b\}
\end{aligned}
$$

Example of the Point of the Game

$a<b$.
$L_{a}=\{1<2<\cdots<a\}$
$L_{b}=\{1<2<\cdots<b\}$
DUP is cra-cra! He thinks L_{a} and L_{b} are the same!

Example of the Point of the Game

$a<b$.
$L_{a}=\{1<2<\cdots<a\}$
$L_{b}=\{1<2<\cdots<b\}$
DUP is cra-cra! He thinks L_{a} and L_{b} are the same!
(1) SPOIL wants to convince DUP that $L_{a} \neq L_{b}$.

Example of the Point of the Game

$a<b$.
$L_{a}=\{1<2<\cdots<a\}$
$L_{b}=\{1<2<\cdots<b\}$
DUP is cra-cra! He thinks L_{a} and L_{b} are the same!
(1) SPOIL wants to convince DUP that $L_{a} \neq L_{b}$.

- DUP wants to resist the attempt.

Example of the Point of the Game

$a<b$.
$L_{a}=\{1<2<\cdots<a\}$
$L_{b}=\{1<2<\cdots<b\}$
DUP is cra-cra! He thinks L_{a} and L_{b} are the same!

- SPOIL wants to convince DUP that $L_{a} \neq L_{b}$.
- DUP wants to resist the attempt.

We will call SPOIL S and DUP D to fit on slides.

Rules of the Game

Parameter: k The number of rounds.

Rules of the Game

Parameter: k The number of rounds.
(0) S: pick number in one orderings.

Rules of the Game

Parameter: k The number of rounds.
(1) S: pick number in one orderings.
(0) D: pick number in OTHER ORDERING. D will try to pick a point that most looks like the other point.

Rules of the Game

Parameter: k The number of rounds.
(1) S: pick number in one orderings.
(2) D: pick number in OTHER ORDERING. D will try to pick a point that most looks like the other point.

- Repeat for k rounds.

Rules of the Game

Parameter: k The number of rounds.
(1) S: pick number in one orderings.
(2) D: pick number in OTHER ORDERING. D will try to pick a point that most looks like the other point.

- Repeat for k rounds.
- This process creates a map between k points of L_{a} and k points of L_{b}.

Rules of the Game

Parameter: k The number of rounds.
(0) S: pick number in one orderings.
(0) D: pick number in OTHER ORDERING. D will try to pick a point that most looks like the other point.

- Repeat for k rounds.
- This process creates a map between k points of L_{a} and k points of L_{b}.
- If this map is order preserving D wins, else S wins.

Rules of the Game

Parameter: k The number of rounds.
(1) S: pick number in one orderings.
(3) D: pick number in OTHER ORDERING. D will try to pick a point that most looks like the other point.

- Repeat for k rounds.
- This process creates a map between k points of L_{a} and k points of L_{b}.
- If this map is order preserving D wins, else S wins.

Bill plays a student $\left(L_{3}, L_{4}, 2\right),\left(L_{3}, L_{4}, 3\right)$

Our Real Goal

Since $L_{a} \neq L_{b}$, S will win if k is large enough.

Our Real Goal

Since $L_{a} \neq L_{b}, S$ will win if k is large enough. We want to know the smallest k.

Our Real Goal

Since $L_{a} \neq L_{b}$, S will win if k is large enough.
We want to know the smallest k.
We assume both players play perfectly.

Our Real Goal

Since $L_{a} \neq L_{b}$, S will win if k is large enough.
We want to know the smallest k.
We assume both players play perfectly.
We want k such that

Our Real Goal

Since $L_{a} \neq L_{b}$, S will win if k is large enough.
We want to know the smallest k.
We assume both players play perfectly.
We want k such that

- S beats D in the $\left(L_{a}, L_{b}, k\right)$ game.

Our Real Goal

Since $L_{a} \neq L_{b}, S$ will win if k is large enough.
We want to know the smallest k.
We assume both players play perfectly.
We want k such that

- S beats D in the $\left(L_{a}, L_{b}, k\right)$ game.
- D beats S in the $\left(L_{a}, L_{b}, k-1\right)$ game.

Breakout Rooms!

Students go to breakout rooms.

Breakout Rooms!

Students go to breakout rooms.
Try to determine:

Breakout Rooms!

Students go to breakout rooms.
Try to determine:
(c) Who wins $\left(L_{3}, L_{4}, 2\right)$? (2 moves).

Breakout Rooms!

Students go to breakout rooms.
Try to determine:
(1) Who wins $\left(L_{3}, L_{4}, 2\right)$? (2 moves).
(Who wins $\left(L_{8}, L_{10}, 3\right)$? (3 moves)

Breakout Rooms!

Students go to breakout rooms.
Try to determine:
(- Who wins $\left(L_{3}, L_{4}, 2\right)$? (2 moves).
(Who wins ($L_{8}, L_{10}, 3$)? (3 moves)

- GENERALLY: Who wins $\left(L_{a}, L_{b}, k\right)$.

Generalize

Can use any orderings L, L^{\prime}

Generalize

Can use any orderings L, L^{\prime}

- \mathbb{N} and \mathbb{Q} are the usual orderings.

Generalize

Can use any orderings L, L^{\prime}

- \mathbb{N} and \mathbb{Q} are the usual orderings.
- \mathbb{N}^{*} is the ordering $\cdots<2<1<0$.

Generalize

Can use any orderings L, L^{\prime}

- \mathbb{N} and \mathbb{Q} are the usual orderings.
- \mathbb{N}^{*} is the ordering $\cdots<2<1<0$.
- If L is an ordering then L^{*} is that ordering backwards.

Generalize

Can use any orderings L, L^{\prime}

- \mathbb{N} and \mathbb{Q} are the usual orderings.
- \mathbb{N}^{*} is the ordering $\cdots<2<1<0$.
- If L is an ordering then L^{*} is that ordering backwards.

Play a student \mathbb{N} and \mathbb{Z} with 1 move, 2 moves

Breakout Rooms!

In all problems we want a k such that condition holds.

Breakout Rooms!

In all problems we want a k such that condition holds.

- D wins $(\mathbb{N}, \mathbb{Z}, k-1)$, S wins $(\mathbb{N}, \mathbb{Z}, k)$.

Breakout Rooms!

In all problems we want a k such that condition holds.

- D wins $(\mathbb{N}, \mathbb{Z}, k-1), S$ wins $(\mathbb{N}, \mathbb{Z}, k)$.
- D wins $(\mathbb{N}, \mathbb{Q}, k-1), S$ wins $(\mathbb{N}, \mathbb{Q}, k)$.

Breakout Rooms!

In all problems we want a k such that condition holds.

- D wins $(\mathbb{N}, \mathbb{Z}, k-1), S$ wins $(\mathbb{N}, \mathbb{Z}, k)$.
- D wins $(\mathbb{N}, \mathbb{Q}, k-1), S$ wins $(\mathbb{N}, \mathbb{Q}, k)$.
- D wins $(\mathbb{Z}, \mathbb{Q}, k-1), S$ wins $(\mathbb{Z}, \mathbb{Q}, k)$.

Breakout Rooms!

In all problems we want a k such that condition holds.
(0. D wins $(\mathbb{N}, \mathbb{Z}, k-1)$, S wins $(\mathbb{N}, \mathbb{Z}, k)$.
(0 D wins $(\mathbb{N}, \mathbb{Q}, k-1)$, S wins $(\mathbb{N}, \mathbb{Q}, k)$.

- D wins $(\mathbb{Z}, \mathbb{Q}, k-1)$, S wins $(\mathbb{Z}, \mathbb{Q}, k)$.
- D wins $\left(L_{10}, \mathbb{N}+\mathbb{N}^{*}, k-1\right)$, S wins $\left(L_{10}, \mathbb{N}+\mathbb{N}^{*}, k\right)$.

Breakout Rooms!

In all problems we want a k such that condition holds.
(0. D wins $(\mathbb{N}, \mathbb{Z}, k-1)$, S wins $(\mathbb{N}, \mathbb{Z}, k)$.
(0 D wins $(\mathbb{N}, \mathbb{Q}, k-1)$, S wins $(\mathbb{N}, \mathbb{Q}, k)$.

- D wins $(\mathbb{Z}, \mathbb{Q}, k-1)$, S wins $(\mathbb{Z}, \mathbb{Q}, k)$.
- D wins $\left(L_{10}, \mathbb{N}+\mathbb{N}^{*}, k-1\right)$, S wins $\left(L_{10}, \mathbb{N}+\mathbb{N}^{*}, k\right)$.
- D wins $(\mathbb{N}+\mathbb{Z}, \mathbb{N}, k-1)$, S wins $(\mathbb{N}+\mathbb{Z}, \mathbb{N}, k)$.

A Notion of L, L^{\prime} being Similar

Let L and L^{\prime} be two linear orderings.

Definition

If D wins the k-round DS -game on L, L^{\prime} then L, L^{\prime} are k-game equivalent (denoted $L \equiv{ }_{k}^{G} L^{\prime}$).

What is Truth?

All sentences use the usual logic symbols and $<$.

What is Truth?

All sentences use the usual logic symbols and $<$.
Definition
If L is a linear a linear ordering and ϕ is a sentence then $L \models \phi$ means that ϕ is true in L.

What is Truth?

All sentences use the usual logic symbols and $<$.
Definition
If L is a linear a linear ordering and ϕ is a sentence then $L \models \phi$ means that ϕ is true in L.

Example

Let $\phi=(\forall x)(\forall y)(\exists z)[x<y \Longrightarrow x<z<y]$

What is Truth?

All sentences use the usual logic symbols and $<$.
Definition
If L is a linear a linear ordering and ϕ is a sentence then $L \models \phi$ means that ϕ is true in L.

Example

Let $\phi=(\forall x)(\forall y)(\exists z)[x<y \Longrightarrow x<z<y]$
© $\mathbb{Q} \models \phi$

What is Truth?

All sentences use the usual logic symbols and $<$.
Definition
If L is a linear a linear ordering and ϕ is a sentence then $L \models \phi$ means that ϕ is true in L.

Example

Let $\phi=(\forall x)(\forall y)(\exists z)[x<y \Longrightarrow x<z<y]$
($\mathbb{Q} \models \phi$
(2) $\mathbb{N} \models \neg \phi$

Quantifier Depth Formally

If $\phi(\vec{x})$ has 0 quantifiers then $\operatorname{qd}(\phi(\vec{x}))=0$.

Quantifier Depth Formally

If $\phi(\vec{x})$ has 0 quantifiers then $\operatorname{qd}(\phi(\vec{x}))=0$.
If $\alpha \in\{\wedge, \vee, \rightarrow\}$ then

Quantifier Depth Formally

If $\phi(\vec{x})$ has 0 quantifiers then $\operatorname{qd}(\phi(\vec{x}))=0$.
If $\alpha \in\{\wedge, \vee, \rightarrow\}$ then

$$
\operatorname{qd}\left(\phi_{1}(\vec{x}) \alpha \phi_{2}(\vec{x})\right)=\max \left\{\operatorname{qd}\left(\phi_{1}(\vec{x}), \operatorname{qd}\left(\phi_{2}(\vec{x})\right)\right\} .\right.
$$

Quantifier Depth Formally

If $\phi(\vec{x})$ has 0 quantifiers then $\operatorname{qd}(\phi(\vec{x}))=0$.
If $\alpha \in\{\wedge, \vee, \rightarrow\}$ then

$$
\begin{gathered}
\operatorname{qd}\left(\phi_{1}(\vec{x}) \alpha \phi_{2}(\vec{x})\right)=\max \left\{\operatorname{qd}\left(\phi_{1}(\vec{x}), \operatorname{qd}\left(\phi_{2}(\vec{x})\right)\right\} .\right. \\
\operatorname{qd}(\neg \phi(\vec{x}))=\operatorname{qd}(\phi(\vec{x})) .
\end{gathered}
$$

Quantifier Depth Formally

If $\phi(\vec{x})$ has 0 quantifiers then $\operatorname{qd}(\phi(\vec{x}))=0$.
If $\alpha \in\{\wedge, \vee, \rightarrow\}$ then

$$
\begin{gathered}
\operatorname{qd}\left(\phi_{1}(\vec{x}) \alpha \phi_{2}(\vec{x})\right)=\max \left\{\operatorname{qd}\left(\phi_{1}(\vec{x}), \operatorname{qd}\left(\phi_{2}(\vec{x})\right)\right\} .\right. \\
\operatorname{qd}(\neg \phi(\vec{x}))=\operatorname{qd}(\phi(\vec{x})) .
\end{gathered}
$$

If $Q \in\{\exists, \forall\}$ then

$$
\operatorname{qd}\left(\left(Q x_{1}\right)\left[\phi\left(x_{1}, \ldots, x_{n}\right)\right]=\operatorname{qd}\left(\phi_{1}\left(x_{1}, \ldots, x_{n}\right)\right)+1\right.
$$

Example of Quantifier Depth

$$
(\forall x)(\forall z)[x<z \rightarrow(\exists y)[x<y<x]]
$$

Example of Quantifier Depth

$$
(\forall x)(\forall z)[x<z \rightarrow(\exists y)[x<y<x]]
$$

Lets take it apart

Example of Quantifier Depth

$$
(\forall x)(\forall z)[x<z \rightarrow(\exists y)[x<y<x]]
$$

Lets take it apart
$\operatorname{qd}((\exists y)[x<y<z])=1+0=1$.

Example of Quantifier Depth

$$
(\forall x)(\forall z)[x<z \rightarrow(\exists y)[x<y<x]]
$$

Lets take it apart

$$
\begin{aligned}
& \operatorname{qd}((\exists y)[x<y<z])=1+0=1 \\
& \operatorname{qd}(x<z \rightarrow(\exists y)[x<y<z])=\max \{0,1\}=1
\end{aligned}
$$

Example of Quantifier Depth

$$
(\forall x)(\forall z)[x<z \rightarrow(\exists y)[x<y<x]]
$$

Lets take it apart

$$
\begin{aligned}
& \operatorname{qd}((\exists y)[x<y<z])=1+0=1 . \\
& \operatorname{qd}(x<z \rightarrow(\exists y)[x<y<z])=\max \{0,1\}=1 .
\end{aligned}
$$

$$
\operatorname{qd}((\forall x)(\forall z)[x<z \rightarrow(\exists y)[x<y<x]])=2+1=3
$$

Another Notion of L, L^{\prime} Similar

Let L and L^{\prime} be two linear orderings.

Another Notion of L, L^{\prime} Similar

Let L and L^{\prime} be two linear orderings.
Definition
L and L^{\prime} are k-truth-equiv $\left(L \equiv_{k}^{T} L^{\prime}\right)$

$$
(\forall \phi, q d(\phi) \leq k)\left[L \models \phi \text { iff } L^{\prime} \models \phi .\right.
$$

The Big Theorem

Theorem
Let L, L^{\prime} be any linear ordering and let $k \in \mathbb{N}$.

The Big Theorem

Theorem
Let L, L^{\prime} be any linear ordering and let $k \in \mathbb{N}$.
The following are equivalent.

The Big Theorem

Theorem
Let L, L^{\prime} be any linear ordering and let $k \in \mathbb{N}$.
The following are equivalent.
(c) $L \equiv_{k}^{T} L^{\prime}$

The Big Theorem

Theorem
Let L, L^{\prime} be any linear ordering and let $k \in \mathbb{N}$.
The following are equivalent.
(1) $L \equiv_{k}^{T} L^{\prime}$
(2) $L \equiv_{k}^{G} L^{\prime}$

Applications

Applications

(1) Density cannot be expressed with qd 2. (Proof: $\mathbb{Z} \equiv_{2}^{G} \mathbb{Q}$ so $\left.\mathbb{Z} \equiv_{2}^{T} \mathbb{Q}\right)$.

Applications

(1) Density cannot be expressed with qd 2. (Proof: $\mathbb{Z} \equiv{ }_{2}^{G} \mathbb{Q}$ so $\left.\mathbb{Z} \equiv_{2}^{T} \mathbb{Q}\right)$.
(2 Well foundedness cannot be expressed in first order at all! (Proof: $(\forall n)\left[\mathbb{N}+\mathbb{Z} \equiv{ }_{n}^{G} \mathbb{N}\right.$).

Applications

- Density cannot be expressed with qd 2. (Proof: $\mathbb{Z} \equiv_{2}^{G} \mathbb{Q}$ so $\left.\mathbb{Z} \equiv_{2}^{T} \mathbb{Q}\right)$.
(2 Well foundedness cannot be expressed in first order at all! (Proof: $(\forall n)\left[\mathbb{N}+\mathbb{Z} \equiv{ }_{n}^{G} \mathbb{N}\right.$).
- Upshot: Questions about expressability become questions about games.

