Duplicator-Spoiler Games

a < *b*.

$$a < b$$
.
 $L_a = \{1 < 2 < \dots < a\}$
 $L_b = \{1 < 2 < \dots < b\}$

DUP is **cra-cra**! He thinks L_a and L_b are the same!

- a < b. $L_a = \{1 < 2 < \dots < a\}$ $L_b = \{1 < 2 < \dots < b\}$
- DUP is **cra-cra**! He thinks L_a and L_b are the same!
 - SPOIL wants to convince DUP that $L_a \neq L_b$.

a < b. $L_a = \{1 < 2 < \dots < a\}$ $L_b = \{1 < 2 < \dots < b\}$

DUP is **cra-cra**! He thinks L_a and L_b are the same!

- SPOIL wants to convince DUP that $L_a \neq L_b$.
- OUP wants to resist the attempt.

a < b. $L_a = \{1 < 2 < \dots < a\}$ $L_b = \{1 < 2 < \dots < b\}$

DUP is **cra-cra**! He thinks L_a and L_b are the same!

- SPOIL wants to convince DUP that $L_a \neq L_b$.
- DUP wants to resist the attempt.

We will call SPOIL S and DUP D to fit on slides.

Parameter: k The number of rounds.

• S: pick number in one orderings.

- S: pick number in one orderings.
- D: pick number in OTHER ORDERING. D will try to pick a point that most looks like the other point.

- S: pick number in one orderings.
- D: pick number in OTHER ORDERING. D will try to pick a point that most looks like the other point.
- Repeat for k rounds.

- S: pick number in one orderings.
- D: pick number in OTHER ORDERING. D will try to pick a point that most looks like the other point.
- Repeat for k rounds.
- This process creates a map between k points of L_a and k points of L_b.

- S: pick number in one orderings.
- D: pick number in OTHER ORDERING. D will try to pick a point that most looks like the other point.
- Repeat for k rounds.
- This process creates a map between k points of L_a and k points of L_b.
- If this map is order preserving D wins, else S wins.

- S: pick number in one orderings.
- D: pick number in OTHER ORDERING. D will try to pick a point that most looks like the other point.
- Repeat for k rounds.
- This process creates a map between k points of L_a and k points of L_b.
- If this map is order preserving D wins, else S wins. Bill plays a student $(L_3, L_4, 2)$, $(L_3, L_4, 3)$

Since $L_a \neq L_b$, S will win if k is large enough.

Since $L_a \neq L_b$, S will win if k is large enough. We want to know the smallest k.

Since $L_a \neq L_b$, S will win if k is large enough. We want to know the smallest k. We assume both players play perfectly.

Since $L_a \neq L_b$, S will win if k is large enough. We want to know the smallest k. We assume both players play perfectly. We want k such that

Since $L_a \neq L_b$, S will win if k is large enough. We want to know the smallest k. We assume both players play perfectly.

We want k such that

• S beats D in the (L_a, L_b, k) game.

Since $L_a \neq L_b$, S will win if k is large enough. We want to know the smallest k.

- We assume both players play perfectly.
- We want k such that
 - S beats D in the (L_a, L_b, k) game.
 - D beats S in the $(L_a, L_b, k-1)$ game.

Students go to breakout rooms.

Students go to breakout rooms. Try to determine:

Students go to breakout rooms. Try to determine:

• Who wins $(L_3, L_4, 2)$? (2 moves).

Students go to breakout rooms. Try to determine:

- Who wins $(L_3, L_4, 2)$? (2 moves).
- Who wins $(L_8, L_{10}, 3)$? (3 moves)

Students go to breakout rooms. Try to determine:

- Who wins $(L_3, L_4, 2)$? (2 moves).
- Who wins $(L_8, L_{10}, 3)$? (3 moves)
- GENERALLY: Who wins (L_a, L_b, k) .

Can use any orderings L, L'

• \mathbb{N} and \mathbb{Q} are the usual orderings.

- \mathbb{N} and \mathbb{Q} are the usual orderings.
- $\ \ \, {\mathbb N}^* \ \ \, \text{is the ordering} \ \ \, \cdots < 2 < 1 < 0.$

- ${\rm \bullet}~{\mathbb N}$ and ${\mathbb Q}$ are the usual orderings.
- $\ \ \, {\mathbb N}^* \ \ \, \text{is the ordering} \ \ \, \cdots < 2 < 1 < 0.$
- If L is an ordering then L^* is that ordering backwards.

- ${\rm \bullet}~{\mathbb N}$ and ${\mathbb Q}$ are the usual orderings.
- $\ \ \, {\mathbb N}^* \ \ \, \text{is the ordering} \ \ \, \cdots < 2 < 1 < 0.$
- If *L* is an ordering then L^* is that ordering backwards. **Play a student** \mathbb{N} and \mathbb{Z} with 1 move, 2 moves

In all problems we want a k such that condition holds. • D wins $(\mathbb{N}, \mathbb{Z}, k - 1)$, S wins $(\mathbb{N}, \mathbb{Z}, k)$.

- D wins $(\mathbb{N}, \mathbb{Z}, k-1)$, S wins $(\mathbb{N}, \mathbb{Z}, k)$.
- D wins $(\mathbb{N}, \mathbb{Q}, k-1)$, S wins $(\mathbb{N}, \mathbb{Q}, k)$.

- D wins $(\mathbb{N}, \mathbb{Z}, k-1)$, S wins $(\mathbb{N}, \mathbb{Z}, k)$.
- D wins $(\mathbb{N}, \mathbb{Q}, k-1)$, S wins $(\mathbb{N}, \mathbb{Q}, k)$.
- D wins $(\mathbb{Z}, \mathbb{Q}, k-1)$, S wins $(\mathbb{Z}, \mathbb{Q}, k)$.

- D wins $(\mathbb{N}, \mathbb{Z}, k-1)$, S wins $(\mathbb{N}, \mathbb{Z}, k)$.
- D wins $(\mathbb{N}, \mathbb{Q}, k-1)$, S wins $(\mathbb{N}, \mathbb{Q}, k)$.
- D wins $(\mathbb{Z}, \mathbb{Q}, k-1)$, S wins $(\mathbb{Z}, \mathbb{Q}, k)$.
- D wins $(L_{10}, \mathbb{N} + \mathbb{N}^*, k 1)$, S wins $(L_{10}, \mathbb{N} + \mathbb{N}^*, k)$.

Breakout Rooms!

In all problems we want a k such that condition holds.

- D wins $(\mathbb{N}, \mathbb{Z}, k-1)$, S wins $(\mathbb{N}, \mathbb{Z}, k)$.
- D wins $(\mathbb{N}, \mathbb{Q}, k-1)$, S wins $(\mathbb{N}, \mathbb{Q}, k)$.
- D wins $(\mathbb{Z}, \mathbb{Q}, k-1)$, S wins $(\mathbb{Z}, \mathbb{Q}, k)$.
- D wins $(L_{10}, \mathbb{N} + \mathbb{N}^*, k 1)$, S wins $(L_{10}, \mathbb{N} + \mathbb{N}^*, k)$.
- D wins $(\mathbb{N} + \mathbb{Z}, \mathbb{N}, k 1)$, S wins $(\mathbb{N} + \mathbb{Z}, \mathbb{N}, k)$.

A Notion of L, L' being Similar

Let L and L' be two linear orderings.

Definition

If D wins the k-round DS-game on L, L' then L, L' are k-game equivalent (denoted $L \equiv_k^G L'$).

All sentences use the usual logic symbols and <.

All sentences use the usual logic symbols and <.

Definition

If L is a linear a linear ordering and ϕ is a sentence then

 $L \models \phi$ means that ϕ is true in L.

All sentences use the usual logic symbols and <.

Definition

If *L* is a linear a linear ordering and ϕ is a sentence then $L \models \phi$ means that ϕ is true in *L*.

 $E \models \varphi$ means that φ is the m

Example

Let
$$\phi = (\forall x)(\forall y)(\exists z)[x < y \implies x < z < y]$$

All sentences use the usual logic symbols and <.

Definition

If *L* is a linear a linear ordering and ϕ is a sentence then $L \models \phi$ means that ϕ is true in *L*.

Example

Let
$$\phi = (\forall x)(\forall y)(\exists z)[x < y \implies x < z < y]$$

•
$$\mathbb{Q} \models \phi$$

All sentences use the usual logic symbols and <.

Definition

If *L* is a linear a linear ordering and ϕ is a sentence then $L \models \phi$ means that ϕ is true in *L*.

Example

Let
$$\phi = (\forall x)(\forall y)(\exists z)[x < y \implies x < z < y]$$

•
$$\mathbb{Q} \models \phi$$

If $\phi(\vec{x})$ has 0 quantifiers then $qd(\phi(\vec{x})) = 0$.

If $\phi(\vec{x})$ has 0 quantifiers then $qd(\phi(\vec{x})) = 0$. If $\alpha \in \{\land, \lor, \rightarrow\}$ then

If $\phi(\vec{x})$ has 0 quantifiers then $qd(\phi(\vec{x})) = 0$. If $\alpha \in \{\land, \lor, \rightarrow\}$ then

$$\operatorname{qd}(\phi_1(\vec{x}) \ \alpha \ \phi_2(\vec{x})) = \max\{\operatorname{qd}(\phi_1(\vec{x}), \operatorname{qd}(\phi_2(\vec{x}))\}.$$

If $\phi(\vec{x})$ has 0 quantifiers then $qd(\phi(\vec{x})) = 0$. If $\alpha \in \{\land, \lor, \rightarrow\}$ then

$$\operatorname{qd}(\phi_1(\vec{x}) \ \alpha \ \phi_2(\vec{x})) = \max\{\operatorname{qd}(\phi_1(\vec{x}), \operatorname{qd}(\phi_2(\vec{x}))\}.$$

$$\operatorname{qd}(\neg \phi(\vec{x})) = \operatorname{qd}(\phi(\vec{x})).$$

If $\phi(\vec{x})$ has 0 quantifiers then $qd(\phi(\vec{x})) = 0$. If $\alpha \in \{\land, \lor, \rightarrow\}$ then

$$\operatorname{qd}(\phi_1(\vec{x}) \ \alpha \ \phi_2(\vec{x})) = \max\{\operatorname{qd}(\phi_1(\vec{x}), \operatorname{qd}(\phi_2(\vec{x}))\}.$$

$$\operatorname{qd}(\neg \phi(\vec{x})) = \operatorname{qd}(\phi(\vec{x})).$$

If $Q \in \{\exists, \forall\}$ then

$$\operatorname{qd}((Qx_1)[\phi(x_1,\ldots,x_n)] = \operatorname{qd}(\phi_1(x_1,\ldots,x_n)) + 1$$

$(\forall x)(\forall z)[x < z \rightarrow (\exists y)[x < y < x]]$

$(\forall x)(\forall z)[x < z \rightarrow (\exists y)[x < y < x]]$

Lets take it apart

$$(\forall x)(\forall z)[x < z \rightarrow (\exists y)[x < y < x]]$$

Lets take it apart $qd((\exists y)[x < y < z]) = 1 + 0 = 1.$

$$(\forall x)(\forall z)[x < z \rightarrow (\exists y)[x < y < x]]$$

Lets take it apart $qd((\exists y)[x < y < z]) = 1 + 0 = 1.$ $qd(x < z \rightarrow (\exists y)[x < y < z]) = max\{0, 1\} = 1.$

$$(\forall x)(\forall z)[x < z \rightarrow (\exists y)[x < y < x]]$$

Lets take it apart $qd((\exists y)[x < y < z]) = 1 + 0 = 1.$ $qd(x < z \rightarrow (\exists y)[x < y < z]) = max\{0, 1\} = 1.$

 $\operatorname{qd}((\forall x)(\forall z)[x < z \to (\exists y)[x < y < x]]) = 2 + 1 = 3$

Another Notion of L, L' Similar

Let L and L' be two linear orderings.

Another Notion of L, L' Similar

Let L and L' be two linear orderings.

Definition

L and L' are k-truth-equiv $(L \equiv_k^T L')$

 $(\forall \phi, qd(\phi) \leq k)[L \models \phi \text{ iff } L' \models \phi.$

Theorem

Let L, L' be any linear ordering and let $k \in \mathbb{N}$.

Theorem

Let L, L' be any linear ordering and let $k \in \mathbb{N}$. The following are equivalent.

Theorem

Let L, L' be any linear ordering and let $k \in \mathbb{N}$. The following are equivalent.

• $L \equiv_k^T L'$

Theorem

Let L, L' be any linear ordering and let $k \in \mathbb{N}$. The following are equivalent.

• $L \equiv_k^T L'$ • $L \equiv_k^G L'$

• Density *cannot* be expressed with qd 2. (Proof: $\mathbb{Z} \equiv_2^G \mathbb{Q}$ so $\mathbb{Z} \equiv_2^T \mathbb{Q}$).

- Density *cannot* be expressed with qd 2. (Proof: $\mathbb{Z} \equiv_2^G \mathbb{Q}$ so $\mathbb{Z} \equiv_2^T \mathbb{Q}$).
- Well foundedness cannot be expressed in first order at all! (Proof: (∀n)[ℕ + ℤ≡^G_nℕ).

- Density *cannot* be expressed with qd 2. (Proof: Z≡^G₂ Q so Z≡^T₂ Q).
- Well foundedness cannot be expressed in first order at all! (Proof: (∀n)[N + Z≡^G_nN).
- Upshot: Questions about expressability become questions about games.