
The Emptier-Filler Game



The Players and the Goal

We describe several games between

E: The Emptier
F: The Filler.

There will be a bin with numbers in it.

I If the bin is ever empty then E wins.

I If game goes forever and bin is always nonempty then F wins.
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The Emptier-Filler Game on N

1) F puts a finite multiset of N into the bin.
(e.g., bin has {1, 1, 1, 2, 3, 4, 9, 9, 18, 18}.

2) E takes out ONE number n (e.g., 18).

3) F puts in as many numbers as he wants that are < n
(e.g., replace 18 with 99,999,999 17’s and 5000 16’s.)

Which player has the winning strategy? What is that strategy.
Breakout Rooms!
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Answer!

E wins!

Strategy for E Keep removing the largest number in the box.

Why does this work? We could do an induction on the largest
number in the bin (NOT on the number of numbers in the bin!).

What if E plays differently? One can show that no matter
what E does, she wins!

How to prove that? By an induction on a funky ordering. Won’t
be doing that.
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The Emptier-Filler Game on Other Orderings

X is any of Z, Q≥0, N + N, N + N + · · · , N + Z, N + N∗.
1) F puts a finite multiset of X into the bin.

2) E takes out ONE number n.
3) F puts in as many numbers as he wants that are < n

For each of X = Z, X = Q, X = N + N, X = N + N + · · · ,
X = N + Z, X = N + N∗ who wins?
Breakout Rooms!
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Answers!

X = N

E wins–Always remove the largest element
X = Z F wins–If E removes n, F puts in n − 1.
X = Q F wins–If E removes n, F puts in n

2 .
X = N+ N E wins–Always remove the largest element.
Key When you remove the 0 in second copy of N you have to
replace it with some element of the first N. So eventually all
elements are in first N.
X = N+ N+ NE wins–Always remove the largest element.
Key When you remove the 0 in third copy of N you have to
replace it with some element of the second of first N. So
eventually all elements from the third copy are in the second. And
then in the first.
How to make this rigorous? Ind on the number of copies of N.
X = N+ Z F wins. Bin initially has 0 in Z, then always replace n
by n − 1 in Z
X = N+ N∗ F wins. Bin initially has 0 in N∗, then always replace
n by n − 1 in N∗
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Need a General Theorem

Question Let X be a set and � be an ordering on it. Let the
(X ,�)-game be the game as above where we put elements of X in
the bin.

In the following sentence fill in the ???
E can win the (X ,�)-game if and only if (X ,�) has property
???.
Breakout Rooms!
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Def (X ,�) is well ordered if there are NO infinite decreasing
sequences.
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