START RECORDING

k-nomial Theorem and Pascal's Triangle

CMSC 250

The Binomial Theorem and Some Computational Challenges

The Binomial Theorem

- Recall the following identities from highschool:
- $(x + y)^2 = x^2 + 2xy + y^2$
- $(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$
- $(x + y)^4 = x^4 + 4x^3y^1 + 6x^2y^2 + 4x^1y^3 + y^4$

The Binomial Theorem

- Recall the following identities from highschool:
- $(x + y)^2 = \mathbf{1}x^2 + \mathbf{2}xy + \mathbf{1}y^2$
- $(x + y)^3 = 1x^3 + 3x^2y + 3xy^2 + 1y^3$
- $(x + y)^4 = 1x^4 + 4x^2y^2 + 6x^2y^2 + 4x^2y^2 + 1y^4$
- Is there a pattern here? Can we easily generate the coefficients?

The Binomial Theorem

- Recall the following identities from highschool:
- $(x + y)^2 = \mathbf{1}x^2 + \mathbf{2}xy + \mathbf{1}y^2$
- $(x + y)^3 = 1x^3 + 3x^2y + 3xy^2 + 1y^3$
- $(x + y)^4 = 1x^4 + 4x^3y^1 + 6x^2y^2 + 4x^1y^3 + 1y^4$
- Is there a pattern here? Can we easily generate the coefficients?
 - (Some of you might already know how, but we doubt that you know why)

$$(x + y)^5$$

•
$$(x + y)^5 = (x + y) \cdot (x + y) \cdot (x + y) \cdot (x + y) \cdot (x + y)$$

• What is the coefficient of x^2y^3 ?

$$(x + y)^5$$

- $(x + y)^5 = (x + y) \cdot (x + y) \cdot (x + y) \cdot (x + y) \cdot (x + y)$
- What is the coefficient of x^2y^3 ?
- There are $2^5 = 32$ terms total (many combine, eg xxyyy, xyxyy are both of form x^2y^3).
- How many of those terms have 2 'x's and 3 'y's?

 $(x + y)^5$

• $(x + y)^5 = (x + y) \cdot (x + y) \cdot (x + y) \cdot (x + y) \cdot (x + y)$

xxyyy, xyxyy, xyyxy, yxxyy, yxyxy, yxyyx, yyxxy, yyxyx, yyyxx

хууху, хууух, ухуух,

 $(x + y)^5$

• $(x + y)^5 = (x + y) \cdot (x + y) \cdot (x + y) \cdot (x + y) \cdot (x + y)$

 $(x + y)^{5}$

• $(x + y)^5 = (x + y) \cdot (x + y) \cdot (x + y) \cdot (x + y) \cdot (x + y)$

- This is just choosing 2 slots out of 5 to put the 'x's in.
- There are $\binom{5}{2} = 10$ ways of doing this.

You Do This Now

• What is the coefficient of x^3y^4 in $(x + y)^7$?

You Do This Now

• What is the coefficient of x^3y^4 in $(x + y)^7$?

$$\frac{7!}{3!\cdot 4!} = \binom{7}{3}$$

$$(x+y)^n$$

- We now generalize the previous results:
- $(x+y)^n = (x+y) \cdot (x+y) \cdot \dots \cdot (x+y)$
- Co-efficient of $x^r y^{n-r} = \#$ of ways to select r 'x's from n slots = $\binom{n}{r}$

$$(x+y)^n$$

- We now generalize the previous results:
- $(x+y)^n = (x+y) \cdot (x+y) \cdot \dots \cdot (x+y)$
- Co-efficient of $x^r y^{n-r} = \#$ of ways to select r 'x's from n slots = $\binom{n}{r}$
- Binomial Theorem:

$$(x+y)^n = \sum_{r=0}^n \binom{n}{r} x^r y^{n-r}$$

How to find the coefficients
$$\binom{n}{0}$$
, $\binom{n}{1}$, ..., $\binom{n}{n}$

- Approach #1: Compute **directly** via formula $\binom{n}{r} = \frac{n!}{r!(n-r)!}$
- Problem: Large intermediary numbers, even if n, r and $\binom{n}{r}$ are relatively small!

• Example:
$$\binom{20}{10} = \frac{20!}{10! \cdot 10!} = \frac{1 \times 2 \times \dots \times 10 \times 11 \times 12 \times \dots \times 20}{(1 \times 2 \times \dots \times 10) \cdot (1 \times 2 \times \dots \times 10)}$$

How to find the coefficients
$$\binom{n}{0}$$
, $\binom{n}{1}$, ..., $\binom{n}{n}$

- Approach #1: Compute **directly** via formula $\binom{n}{r} = \frac{n!}{r!(n-r)!}$
- Problem: Large intermediary numbers, even if n, r and $\binom{n}{r}$ are relatively small!

• Example:
$$\binom{20}{10} = \frac{20!}{10! \cdot 10!} = \frac{(1 \times 2 \times \dots \times 10) \times 11 \times 12 \times \dots \times 20}{(1 \times 2 \times \dots \times 10) \cdot (1 \times 2 \times \dots \times 10)} = 184756$$
 large!

- Is our computer **smart enough** to cancel out the stuff in green?
 - Not every computer is!

How to Find the Coefficients
$$\binom{n}{0}$$
, $\binom{n}{1}$, ..., $\binom{n}{n}$

- Approach #1: Compute **directly** via formula $\binom{n}{r} = \frac{n!}{r!(n-r)!}$
- Problem: Large intermediary numbers, even if n, r and $\binom{n}{r}$ are relatively small!

• Example:
$$\binom{20}{10} = \frac{20!}{10! \cdot 10!} = \frac{(1 \times 2 \times \dots \times 10) \times 11 \times 12 \times \dots \times 20}{(1 \times 2 \times \dots \times 10) \cdot (1 \times 2 \times \dots \times 10)} = 184756$$
 large!

- Is our computer **smart enough** to cancel out the stuff in green?
 - Not every computer is!
 - But assuming that ours is, we still have to compute $11 \times 12 \times \cdots \times 20$, which is **quite large, even though the final result is small!**

How to Find the Coefficients
$$\binom{n}{0}$$
, $\binom{n}{1}$, ..., $\binom{n}{n}$

- Approach #1: Compute **directly** via formula $\binom{n}{r} = \frac{n!}{r!(n-r)!}$
- Problem: Large intermediary numbers, even if n, r and $\binom{n}{r}$ are relatively small!

• Example:
$$\binom{20}{10} = \frac{20!}{10! \cdot 10!} = \frac{(1 \times 2 \times \dots \times 10) \times 11 \times 12 \times \dots \times 20}{(1 \times 2 \times \dots \times 10) \cdot (1 \times 2 \times \dots \times 10)} = 184756$$
 Not too large!

- Is our computer **smart enough** to cancel out the stuff in green?
 - Not every computer is!
 - But assuming that ours is, we still have to compute $11 \times 12 \times \cdots \times 20$, which is **quite large**.
- Can we do better?

How to Find the Coefficients
$$\binom{n}{0}$$
, $\binom{n}{1}$, ..., $\binom{n}{n}$

- Approach #1: Compute **directly** via formula $\binom{n}{r} = \frac{n!}{r!(n-r)!}$
- Problem: Large intermediary numbers, even if n, r and $\binom{n}{r}$ are relatively small!

• Example:
$$\binom{20}{10} = \frac{20!}{10! \cdot 10!} = \frac{(1 \times 2 \times \dots \times 10) \times 11 \times 12 \times \dots \times 20}{(1 \times 2 \times \dots \times 10) \cdot (1 \times 2 \times \dots \times 10)} = 184756$$
 Not too large!

- Is our computer smart enough to cancel out the stuff in green?
 - Not every computer is!
 - But assuming that ours is, we still have to compute $11 \times 12 \times \cdots \times 20$, which is **quite large.**
- Can we do better?
 - Yes, through Pascal's triangle!

Using Pascal's Identity and Triangle to Calculate any $\binom{n}{r}$ <u>Fast</u> Expanding Binomial Theorem to Trinomial, Quadrinomial,, k-nomial

An Easy Combinatorial Identity

We will prove that

$$(\forall n, r \in \mathbb{N})[(r \le n) \Rightarrow \binom{n}{r} = \binom{n}{n-r}]$$

in two different ways!

Another Combinatorial Identity

 $(\forall n, r \in \mathbb{N}^{\geq 1}) \left[(r \leq n) \Rightarrow \binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r} \right]$

Another Combinatorial Identity

$$(\forall n, r \in \mathbb{N}^{\geq 1}) \left[(r \leq n) \Rightarrow \binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r} \right]$$

- 1. Algebraic proof
- 2. Combinatorial proof!

A Combinatorial Proof of $\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$

- LHS: #ways to pick r people from a set of n people.
- RHS: Focus on one person, call him Jason.
 - If we pick *Jason*, then we are left with n 1 people to decide if we want to pick or not, from which we now have to pick r 1 people (first term of RHS)
 - OR, if we don't pick *Jason*, we are left with n 1 people to decide if we want to pick or not, yet still r people that we need to pick (second term of RHS).

A Combinatorial Proof of $\binom{n}{r}$

- LHS: #ways to pick r people from a set of n people.
- RHS: Focus on one person, call him *Jason*.
 - If we pick *Jason*, then we are left with n 1 people to decide if we want to pick or not, from which we now have to pick r 1 people (first term of RHS)
 - OR, if we don't pick *Jason*, we are left with n 1 people to decide if we want to pick or not, yet still r people that we need to pick (second term of RHS).

A Combinatorial Proof of $\binom{n}{r}$

- LHS: #ways to pick r people from a set of n people.
- RHS: Focus on one person, call him *Jason*.
 - If we pick *Jason*, then we are left with n 1 people to decide if we want to pick or not, from which we now have to pick r 1 people (first term of RHS)
 - OR, if we don't pick *Jason*, we are left with n 1 people to decide if we want to pick or not, yet still r people that we need to pick (second term of RHS).
- This is a **combinatorial proof**!
- A combinatorial proof is a type of proof where we show two quantities are equal because they solve the same problem.

Upshot

• Use combinatorial identity generate Pascal's triangle generate binomial coefficients $\binom{n}{0}, \binom{n}{1}, \dots, \binom{n}{n}$ use in the expansion of $(x + y)^n$

Efficiency of Pascal's Triangle

- We avoid the intermediary large numbers problem
- i^{th} level of triangle gives us all coefficients $\binom{i}{0}$, $\binom{i}{1}$, ..., $\binom{i}{i}$
- Compute the value of every node as the sum of its two parents
 - Note that the diagonal "edges" of the triangle always 1.

- $(x + y)^n$ has terms of form $x^a y^b$.
- As discussed, many simplify

- $(x + y)^n$ has terms of form $x^a y^b$.
- As discussed, many simplify
- Treat $x^a y^b$ as a string for a minute.
- How many permutations of $x^a y^b$ are there?

 $\frac{(a+b)!}{a! \cdot b!}$

- $(x + y)^n$ has terms of form $x^a y^b$.
- As discussed, many simplify
- Treat $x^a y^b$ as a string for a minute.
- How many permutations of $x^a y^b$ are there?

$$\frac{(a+b)!}{a! \cdot b!} = \frac{n!}{a! \cdot (n-a)!}$$

- $(x + y)^n$ has terms of form $x^a y^b$.
- As discussed, many simplify
- Treat $x^a y^b$ as a string for a minute.
- How many permutations of $x^a y^b$ are there?

$$\frac{(a+b)!}{a! \cdot b!} = \frac{n!}{a! \cdot (n-a)!} = \binom{n}{a}$$

An Exercise For You To Do Now

• Expand $(x + y + z)^2$

An Exercise For You To Do Now

• Expand $(x + y + z)^2$

 $x^{2} + y^{2} + z^{2} + 2xy + 2xz + 2yz$

•
$$(x + y + z)^5 = (x + y + z) \cdot (x + y + z)$$

• The expansion will have terms of form

$$x^a y^b z^c$$
, where $a + b + c = 5$

• What should the coefficients be?

 $x^a y^b z^c$, where a + b + c = 5

- Once again, let's view $x^a y^b z^c$ as a string.
- #permutations of this string =

$$\frac{(a+b+c)!}{a! \cdot b! \cdot c!}$$

 $x^a y^b z^c$, where a + b + c = 5

- Once again, let's view $x^a y^b z^c$ as a string.
- #permutations of this string =

$$\frac{(a+b+c)!}{a!\cdot b!\cdot c!} = \frac{5!}{a!\cdot b!\cdot c!}$$

$$(x + y + z)^{n} = \sum_{\substack{a+b+c=n \\ 0 \le a,b,c \le n}} \frac{n!}{a! \, b! \, c!} x^{a} y^{b} z^{c}$$

k-nomial Theorem

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{\substack{a_1 + a_2 + \dots + a_k = n \\ 0 \le a_1, a_2, \dots, a_k \le n}} \frac{n!}{a_1! a_2! \dots a_k!} x_1^{a_1} x_2^{a_2} \dots x_k^{a_k}$$

k-nomial Theorem

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{\substack{a_1 + a_2 + \dots + a_k = n \\ 0 \le a_1, a_2, \dots, a_k \le n}} \frac{n!}{a_1! a_2! \dots a_k!} x_1^{a_1} x_2^{a_2} \dots x_k^{a_k}$$

STOP RECORDING