# **True or False?**

Is the following TRUE or FALSE:



Is the following TRUE or FALSE:

$$(\forall x)(\forall y)[x < y \rightarrow (\exists z)[x < z < y]]$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Is the following TRUE or FALSE:

$$(\forall x)(\forall y)[x < y \rightarrow (\exists z)[x < z < y]]$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Answer This is a stupid question! Need to specify the Domain.

Is the following TRUE or FALSE:

$$(\forall x)(\forall y)[x < y \rightarrow (\exists z)[x < z < y]]$$

Answer This is a stupid question! Need to specify the Domain. Better Questions Let D mean Domain. 1) If  $D = \mathbb{N}$  then is the statement true?

Is the following TRUE or FALSE:

$$(\forall x)(\forall y)[x < y \rightarrow (\exists z)[x < z < y]]$$

Answer This is a stupid question! Need to specify the Domain. Better Questions Let D mean Domain. 1) If  $D = \mathbb{N}$  then is the statement true? No. Counterexample: x = 1, y = 2. There is no element  $z \in \mathbb{N}$  such that 1 < z < 2.

Is the following TRUE or FALSE:

$$(\forall x)(\forall y)[x < y \rightarrow (\exists z)[x < z < y]]$$

Answer This is a stupid question! Need to specify the Domain. Better Questions Let D mean Domain. 1) If  $D = \mathbb{N}$  then is the statement true? No. Counterexample: x = 1, y = 2. There is no element  $z \in \mathbb{N}$  such that 1 < z < 2. 2) If  $D = \mathbb{Q}$  then is the statement is true?

Is the following TRUE or FALSE:

$$(\forall x)(\forall y)[x < y \rightarrow (\exists z)[x < z < y]]$$

Answer This is a stupid question! Need to specify the Domain. Better Questions Let D mean Domain. 1) If  $D = \mathbb{N}$  then is the statement true? No. Counterexample: x = 1, y = 2. There is no element  $z \in \mathbb{N}$  such that 1 < z < 2.

2) If  $D = \mathbb{Q}$  then is the statement is true? Yes. Take  $z = \frac{x+y}{2}$ .

Consider:

#### $(\exists x)(\forall y \neq x)[y > x]$

Consider:

$$(\exists x)(\forall y \neq x)[y > x]$$

Give a domain where this is T.

Consider:

$$(\exists x)(\forall y \neq x)[y > x]$$

#### Give a domain where this is T. $\mathbb{N}$ with x = 0.

Consider:

$$(\exists x)(\forall y \neq x)[y > x]$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Give a domain where this is T.  $\mathbb{N}$  with x = 0. Give a domain where this is F.

Consider:

#### $(\exists x)(\forall y \neq x)[y > x]$

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

Give a domain where this is T.  $\mathbb{N}$  with x = 0. Give a domain where this is F.  $\mathbb{Z}$  since, forall x, x - 1 < x.

# Expressing Math With Quantifiers

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

#### **Expressing Properties of Numbers: EVEN**

I want to say x is even. How to do that with quantifiers.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

#### **Expressing Properties of Numbers: EVEN**

I want to say x is even. How to do that with quantifiers. Quantifiers range over  $\mathbb{Z}$ .

$$\operatorname{EVEN}(x) \equiv (\exists y)[x = 2y]$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

# Expressing Properties of Numbers: $\equiv 1 \pmod{5}$

I want to say that  $x \equiv 1 \pmod{5}$ , which means that when we divide x by 5 we get a remainder of 1. Lets call this property ONEFIVE

# Expressing Properties of Numbers: $\equiv 1 \pmod{5}$

I want to say that  $x \equiv 1 \pmod{5}$ , which means that when we divide x by 5 we get a remainder of 1. Lets call this property ONEFIVE

Quantifiers range over  $\mathbb{Z}$ .

$$ONEFIVE(x) \equiv (\exists y)[x = 5y + 1]$$

#### **PRIMES over** $\ensuremath{\mathbb{N}}$

I want to say that  $x \in \mathbb{N}$  is PRIME.



#### **PRIMES over** $\ensuremath{\mathbb{N}}$

I want to say that  $x \in \mathbb{N}$  is PRIME. Quantifiers range over  $\mathbb{N}$ .



#### I want to say that $x \in \mathbb{N}$ is PRIME. Quantifiers range over $\mathbb{N}$ .

$$\mathrm{PRIME}(x) \equiv (x \neq 0, 1) \land (\forall y, z) [x = yz \rightarrow (y = 1) \lor (z = 1)]$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

### $\textbf{PRIMES over} \ \mathbb{Z}$

I want to say that  $x \in \mathbb{Z}$  is PRIME.



### $\textbf{PRIMES over} \ \mathbb{Z}$

I want to say that  $x \in \mathbb{Z}$  is PRIME. Quantifiers range over  $\mathbb{Z}$ .



### $\textbf{PRIMES over} \ \mathbb{Z}$

I want to say that  $x \in \mathbb{Z}$  is PRIME. Quantifiers range over  $\mathbb{Z}$ .

 $\text{PRIME}(x) \equiv (x \neq 0, 1) \land (\forall y, z) [x = yz \rightarrow (y = 1) \lor (z = 1)]$ 

Does this work? Discuss.

I want to say that  $x \in \mathbb{Z}$  is PRIME. Quantifiers range over  $\mathbb{Z}$ .

$$\mathrm{PRIME}(x) \equiv (x \neq 0, 1) \land (\forall y, z) [x = yz \rightarrow (y = 1) \lor (z = 1)]$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

Does this work? Discuss.

 $-7 = -1 \times 7$  Its also  $-7 \times -1 \times -1 \times 1$ . So... not a prime?

I want to say that  $x \in \mathbb{Z}$  is PRIME. Quantifiers range over  $\mathbb{Z}$ .

$$\mathrm{PRIME}(x) \equiv (x \neq 0, 1) \land (\forall y, z) [x = yz \rightarrow (y = 1) \lor (z = 1)]$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

Does this work? Discuss.

 $-7 = -1 \times 7$  Its also  $-7 \times -1 \times -1 \times 1$ . So... not a prime? NAH, we want -7 to be a prime.

#### $\text{PRIME}(x) \equiv (x \neq 0, 1) \land (\forall y, z) [x = yz \rightarrow (y = 1) \lor (z = 1)]$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

#### $\mathrm{PRIME}(x) \equiv (x \neq 0, 1) \land (\forall y, z) [x = yz \rightarrow (y = 1) \lor (z = 1)]$

Why did we make 1 an exception? Because  $7 = 1 \times 7$ .



$$\text{PRIME}(x) \equiv (x \neq 0, 1) \land (\forall y, z) [x = yz \rightarrow (y = 1) \lor (z = 1)]$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Why did we make 1 an exception? Because  $7 = 1 \times 7$ .

Should we make -1 an exception also?

$$\text{PRIME}(x) \equiv (x \neq 0, 1) \land (\forall y, z) [x = yz \rightarrow (y = 1) \lor (z = 1)]$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Why did we make 1 an exception? Because  $7 = 1 \times 7$ .

Should we make -1 an exception also? Yes.

$$\text{PRIME}(x) \equiv (x \neq 0, 1) \land (\forall y, z) [x = yz \rightarrow (y = 1) \lor (z = 1)]$$

Why did we make 1 an exception? Because  $7 = 1 \times 7$ .

Should we make -1 an exception also? Yes.

 $\text{PRIME}(x) \equiv (x \neq 0, 1, -1) \land (\forall y, z) [x = yz \rightarrow (y = \pm 1) \lor (z = \pm 1)]$ 

### PRIMES over $\mathbb G$

#### **Def** The **Gaussian Integers** *G* are numbers of the form

 $\{a + bi : a, b \in \mathbb{Z}\}$ 

・ロト・西ト・ヨト・ヨー うへぐ

#### PRIMES over $\mathbb G$

**Def** The **Gaussian Integers** *G* are numbers of the form

$$\{a + bi : a, b \in \mathbb{Z}\}$$

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

We want to define PRIME in *G*. What will be the exceptional numbers? Why? **Breakout Rooms!** 

### PRIMES over $\mathbb G$

**Def** The **Gaussian Integers** *G* are numbers of the form

$$\{a + bi : a, b \in \mathbb{Z}\}$$

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

We want to define PRIME in *G*. What will be the exceptional numbers? Why? Breakout Rooms!

The exceptions are  $\{1, -1, i, -i\}$ . Why?

### **PRIMES over** $\mathbb{G}$

**Def** The **Gaussian Integers** *G* are numbers of the form

$$\{a + bi : a, b \in \mathbb{Z}\}$$

We want to define PRIME in G. What will be the exceptional numbers? Why?

#### Breakout Rooms!

The exceptions are  $\{1, -1, i, -i\}$ . Why?

 $7 = i \times -i \times 7.$ 

We don't really want to count the *i* and -i.

#### Units

**Def** Let *D* be some domain. If  $x \in D$  then **the mult inverse of** *x* (if it exists) is the number *y* such that xy = 1.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ
**Def** Let *D* be some domain. If  $x \in D$  then **the mult inverse of** *x* (if it exists) is the number *y* such that xy = 1. In  $\mathbb{N}$  the only number that has a mult inverse is 1.

Def Let D be some domain. If  $x \in D$  then the mult inverse of x (if it exists) is the number y such that xy = 1. In  $\mathbb{N}$  the only number that has a mult inverse is 1. In  $\mathbb{Z}$  the only numbers that has a mult inverses are 1, -1.

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

Def Let D be some domain. If  $x \in D$  then the mult inverse of x (if it exists) is the number y such that xy = 1. In  $\mathbb{N}$  the only number that has a mult inverse is 1. In  $\mathbb{Z}$  the only numbers that has a mult inverses are 1, -1. In  $\mathbb{G}$  the only numbers that has a mult inverses are 1, -1, i, -i.

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

**Def** Let *D* be some domain. If  $x \in D$  then **the mult inverse of** *x* (if it exists) is the number *y* such that xy = 1.

In  $\mathbb{N}$  the only number that has a mult inverse is 1.

In  $\mathbb Z$  the only numbers that has a mult inverses are 1, -1.

In  $\mathbb{G}$  the only numbers that has a mult inverses are 1, -1, i, -i. **Def** Let D be a domain. The **units of** D are the elements of D that have a multiplicative inverse.

ション ふゆ アメビア メロア しょうくしゃ

**Def** Let *D* be some domain. If  $x \in D$  then **the mult inverse of** *x* (if it exists) is the number *y* such that xy = 1.

In  $\mathbb{N}$  the only number that has a mult inverse is 1.

In  $\mathbb Z$  the only numbers that has a mult inverses are 1, -1.

In  $\mathbb{G}$  the only numbers that has a mult inverses are 1, -1, i, -i. **Def** Let D be a domain. The **units of** D are the elements of D that have a multiplicative inverse.

The Unit are the exceptions. If  $x \in D$ , u is a unit, and v is its inverse, then

x = uvx

We don't want to say x is not prime. u, v should not matter!

## **Units and Primes**

Let *D* be any domain of numbers. We will be quantifying over it.

$$\mathrm{UNIT}(x) \equiv (\exists y)[xy = 1]$$

#### **Units and Primes**

Let *D* be any domain of numbers. We will be quantifying over it.

$$\mathrm{UNIT}(x) \equiv (\exists y)[xy = 1]$$

 $\mathrm{PRIME}(x) \equiv$ 

 $(x \neq 0, x \notin \text{UNIT}) \land (\forall y, z) [x = yz \rightarrow ((y \in \text{UNIT}) \lor (z \in \text{UNIT})].$ 

# So Thats why...

1) So thats why 1 is NOT a prime. In any domain *D* we have **Units**, **Primes**, **Composites**, **0** 

# So Thats why...

1) So thats why 1 is NOT a prime. In any domain *D* we have **Units**, **Primes**, **Composites**, **0** 

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

2) Can we define primes in  $\mathbb{Q}$ ?

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

2) Can we define primes in  $\mathbb{Q}$ ? Discuss

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

2) Can we define primes in  $\mathbb{Q}?$  Discuss All elements of  $\mathbb{Q}$  are units, so there are no primes.

2) Can we define primes in  $\mathbb{Q}$ ? Discuss All elements of  $\mathbb{Q}$  are units, so there are no primes.

3) Let  $ONEFOUR = \{n : n \equiv 1 \pmod{4}\}$ . The only unit is 1. What are the primes in ONEFOUR?

2) Can we define primes in  $\mathbb{Q}$ ? Discuss All elements of  $\mathbb{Q}$  are units, so there are no primes.

3) Let  $ONEFOUR = \{n : n \equiv 1 \pmod{4}\}$ . The only unit is 1. What are the primes in ONEFOUR? Breakout Rooms

2) Can we define primes in  $\mathbb{Q}$ ? Discuss All elements of  $\mathbb{Q}$  are units, so there are no primes.

3) Let  $ONEFOUR = \{n : n \equiv 1 \pmod{4}\}$ . The only unit is 1. What are the primes in ONEFOUR? Breakout Rooms

# **Primes in ONEFOUR**

Elements of ONEFOUR: 1, 5, 9, 13, 17, 21, 25. We stop here.

- 1: a unit
- 5: a prime
- 9: a prime! Note that  $3 \notin \mathrm{ONEFOUR}$  so cannot say  $9 = 3 \times 3$ .

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

- 13,17: Primes
- 21: a prime!
- 25:  $5 \times 5$  are first composite.

## **Expressing Theorems: Four-Square Theorem**

**Four-Square Theorem** Every natural number is the sum of  $\leq 4$  squares.

## **Expressing Theorems: Four-Square Theorem**

Four-Square Theorem Every natural number is the sum of  $\leq 4$  squares. Four-Square Theorem Every natural number is the sum of 4 squares. We allow 0.

#### **Expressing Theorems: Four-Square Theorem**

**Four-Square Theorem** Every natural number is the sum of  $\leq 4$  squares. **Four-Square Theorem** Every natural number is the sum of 4 squares. We allow 0.

$$(\forall x)(\exists x_1, x_2, x_3, x_4)[x = x_1^2 + x_2^2 + x_3^2 + x_4^2]$$

**Goldbach's Conjecture** Every sufficiently large even number can be written as the sum of two primes.

**Goldbach's Conjecture** Every sufficiently large even number can be written as the sum of two primes.

 $(\exists x)(\forall y > x)$ 

 $[\operatorname{EVEN}(y) \to (\exists y_1, y_2)[\operatorname{PRIME}(y_1) \land \operatorname{PRIME}(y_2) \land y = y_1 + y_2]]$ 

**Vinogradov's Theorem** Every sufficiently large odd number can be written as the sum of three primes.

**Vinogradov's Theorem** Every sufficiently large odd number can be written as the sum of three primes.

 $(\exists x)(\forall y > x)$ 

 $[ODD(y) \rightarrow (\exists y_1, y_2, y_3)] [PRIME(y_1) \land PRIME(y_2) \land PRIME(y_3) \land y = y_1 + y_2 \land y_3)] [PRIME(y_1) \land PRIME(y_2) \land PRIME(y_3) \land y = y_1 + y_2 \land y_3)] [PRIME(y_1) \land PRIME(y_2) \land PRIME(y_3) \land y = y_1 + y_2 \land y_3)] [PRIME(y_1) \land PRIME(y_2) \land PRIME(y_3) \land y = y_1 + y_2 \land y_3)] [PRIME(y_1) \land PRIME(y_2) \land PRIME(y_3) \land y = y_1 + y_2 \land y_3)] [PRIME(y_2) \land PRIME(y_3) \land y = y_1 + y_2 \land y_3)] [PRIME(y_2) \land PRIME(y_3) \land y = y_1 + y_2 \land y_3)] [PRIME(y_2) \land PRIME(y_3) \land y = y_1 + y_2 \land y_3)] [PRIME(y_3) \land y = y_1 + y_2 \land y_3)] [PRIME(y_3) \land y = y_1 + y_2 \land y_3)] [PRIME(y_3) \land y = y_1 + y_2 \land y_3)] [PRIME(y_3) \land y = y_1 + y_2 \land y_3)] [PRIME(y_3) \land y = y_1 + y_2 \land y_3)] [PRIME(y_3) \land y = y_1 + y_2 \land y_3)] [PRIME(y_3) \land y = y_1 + y_2 \land y_3)] [PRIME(y_3) \land y = y_1 + y_2 \land y_3)] [PRIME(y_3) \land y = y_1 + y_2 \land y_3)] [PRIME(y_3) \land$ 

< ロ > < 唇 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 〇 へ ()

Thm  $\sqrt{2} \notin \mathbb{Q}$ . (We will prove this later in the course.)



Thm  $\sqrt{2} \notin \mathbb{Q}$ . (We will prove this later in the course.) We want to express this with quantifiers over  $\mathbb{Z}$ . Note that if  $2 = \frac{x^2}{y^2}$  then  $2y^2 = x^2$ .

Thm  $\sqrt{2} \notin \mathbb{Q}$ . (We will prove this later in the course.) We want to express this with quantifiers over  $\mathbb{Z}$ . Note that if  $2 = \frac{x^2}{y^2}$  then  $2y^2 = x^2$ .

$$\neg(\exists x, y)[2y^2 = x^2]$$

Thm  $\sqrt{2} \notin \mathbb{Q}$ . (We will prove this later in the course.) We want to express this with quantifiers over  $\mathbb{Z}$ . Note that if  $2 = \frac{x^2}{y^2}$  then  $2y^2 = x^2$ .

$$\neg(\exists x, y)[2y^2 = x^2]$$

$$(\forall x, y)[2y^2 \neq x^2]$$

Thm  $\sqrt{2} \notin \mathbb{Q}$ . (We will prove this later in the course.) We want to express this with quantifiers over  $\mathbb{Z}$ . Note that if  $2 = \frac{x^2}{y^2}$  then  $2y^2 = x^2$ .

$$\neg(\exists x, y)[2y^2 = x^2]$$

$$(\forall x, y)[2y^2 \neq x^2]$$

Note that using  $\neg(\exists x, y) \equiv (\forall x, y) \neg$  ended up not having a  $\neg$  in the final expression.

ション ふゆ アメビア メロア しょうくしゃ

# **Order Notation**

・ロト・西ト・ヨト・ヨー うへぐ

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The following conversation would never happen.

The following conversation would never happen. **EMILY:**Bill, I have an algorithm that solves SAT in roughly  $n^2$  time!

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ </p>

The following conversation would never happen. **EMILY:**Bill, I have an algorithm that solves SAT in roughly  $n^2$  time!

**BILL:**Roughly? What do you mean?

The following conversation would never happen.

**EMILY:**Bill, I have an algorithm that solves SAT in roughly  $n^2$  time!

**BILL**:Roughly? What do you mean?

**EMILY:** There are constants c, d, e such that my algorithm works in time  $\leq cn^2 + dn + e$ . OH, the algorithm only has this runtime when the number of variables is  $\geq 100$ .

The following conversation would never happen.

**EMILY:**Bill, I have an algorithm that solves SAT in roughly  $n^2$  time!

**BILL**:Roughly? What do you mean?

**EMILY**: There are constants c, d, e such that my algorithm works in time  $\leq cn^2 + dn + e$ . OH, the algorithm only has this runtime when the number of variables is  $\geq 100$ . **BILL**: What are c, d, e?

The following conversation would never happen.

**EMILY:**Bill, I have an algorithm that solves SAT in roughly  $n^2$  time!

**BILL**:Roughly? What do you mean?

**EMILY:** There are constants c, d, e such that my algorithm works in time  $\leq cn^2 + dn + e$ . OH, the algorithm only has this runtime when the number of variables is  $\geq 100$ .

**BILL:**What are c, d, e?

**EMILY:**Who freakin cares! I solved SAT without using brute force and you are concerned with the constants!

# When Do/Don't We Care About Constants?

1) When we first look at a problem we want to just get a sense of how hard it is:
1) When we first look at a problem we want to just get a sense of how hard it is: Exp vs Poly time?

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

 When we first look at a problem we want to just get a sense of how hard it is:
Exp vs Poly time?
If poly then what degree?

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

1) When we first look at a problem we want to just get a sense of how hard it is:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Exp vs Poly time?

If poly then what degree?

If roughly  $n^2$  then can we get it to roughly  $n \log n$  or n?

1) When we first look at a problem we want to just get a sense of how hard it is:

Exp vs Poly time?

If poly then what degree?

If roughly  $n^2$  then can we get it to roughly  $n \log n$  or n?

Once we have exhausted all of our tricks to get it into (say) roughly  $n^2$  time we THEN would do things to get the constant down perhaps non rigorous things

down, perhaps non-rigorous things.

We want to say that we don't care about constants.

\*ロト \*昼 \* \* ミ \* ミ \* ミ \* のへぐ

We want to say that we don't care about constants. We want to say that  $18n^3 + 8n^2 + 12n + 1000$  is roughly  $n^2$ .

We want to say that we don't care about constants. We want to say that  $18n^3 + 8n^2 + 12n + 1000$  is roughly  $n^2$ .  $f \leq O(n^2)$  First attempt:

 $(\exists c)[f(n) \leq cn^2].$ 

We want to say that we don't care about constants. We want to say that  $18n^3 + 8n^2 + 12n + 1000$  is roughly  $n^2$ .  $f \leq O(n^2)$  First attempt:

$$(\exists c)[f(n) \leq cn^2].$$

We do not really care what happens for small values of n. The following definition captures this:

 $f \leq O(n^2)$  Second and final attempt:

We want to say that we don't care about constants. We want to say that  $18n^3 + 8n^2 + 12n + 1000$  is roughly  $n^2$ .  $f \leq O(n^2)$  First attempt:

$$(\exists c)[f(n) \leq cn^2].$$

We do not really care what happens for small values of n. The following definition captures this:

 $f \leq O(n^2)$  Second and final attempt:

$$(\exists n_0)(\exists c)(\forall n \geq n_0)[f(n) \leq cn^2].$$

We want to say that we don't care about constants. We want to say that  $18n^3 + 8n^2 + 12n + 1000$  is roughly  $n^2$ .  $f \leq O(n^2)$  First attempt:

$$(\exists c)[f(n) \leq cn^2].$$

We do not really care what happens for small values of n. The following definition captures this:

 $f \leq O(n^2)$  Second and final attempt:

$$(\exists n_0)(\exists c)(\forall n \geq n_0)[f(n) \leq cn^2].$$

We leave it to the reader to prove that

$$18n^3 + 8n^2 + 12n + 1000 = O(n^2)$$

by finding the values of c, d.



#### $f \leq O(g)$ means

#### $(\exists n_0)(\exists c)(\forall n \geq n_0)[f(n) \leq cg(n)].$





#### $f \leq O(g)$ means

$$(\exists n_0)(\exists c)(\forall n \geq n_0)[f(n) \leq cg(n)].$$

You will see O() a lot in CMSC 351 and 451 when you deal with algorithms and want to bound the run time, roughly.

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

### Other Ways to Use O()

 $f \in n^{O(1)}$  means poly time.



#### Other Ways to Use O()

 $f \in n^{O(1)}$  means poly time.  $f \in 2^{O(n)}$  means  $2^{cn}$  for some c, and after some  $n_0$ .

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

The following conversation would never happen.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The following conversation would never happen. BILL:Emily, I have shown that SAT requires roughly  $2^n$  time!

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The following conversation would never happen. BILL:Emily, I have shown that SAT requires roughly 2<sup>n</sup> time! EMILY:Roughly? What do you mean?

The following conversation would never happen. **BILL**:Emily, I have shown that SAT requires roughly  $2^n$  time! **EMILY**:Roughly? What do you mean? **BILL**:There are constants c, d, e such that ANY algorithm for SAT takes time  $\geq 2^{cn} - dn^2 - e$ . OH, the algorithm only has this runtime when the number of variables is  $\geq 100$ .

The following conversation would never happen. **BILL:**Emily, I have shown that SAT requires roughly  $2^n$  time! **EMILY:**Roughly? What do you mean? **BILL:**There are constants c, d, e such that ANY algorithm for SAT takes time  $\geq 2^{cn} - dn^2 - e$ . OH, the algorithm only has this runtime when the number of variables is  $\geq 100$ . **EMILY:**What are c, d, e?

The following conversation would never happen.

**BILL:**Emily, I have shown that SAT requires roughly 2<sup>n</sup> time! **EMILY:**Roughly? What do you mean?

**BILL:**There are constants c, d, e such that ANY algorithm for SAT takes time  $\geq 2^{cn} - dn^2 - e$ . OH, the algorithm only has this runtime when the number of variables is  $\geq 100$ .

**EMILY:**What are c, d, e?

**BILL:**Who freakin cares! I showed SAT is not in poly time you are concerned with the constants!



#### $\pmb{f} \geq \pmb{\Omega}(\pmb{g})$ means

#### $(\exists n_0)(\exists c)(\forall n \geq n_0)[f(n) \geq cg(n)].$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

 $f = \Omega(g)$ 

#### $f \geq \Omega(g)$ means

#### $(\exists n_0)(\exists c)(\forall n \geq n_0)[f(n) \geq cg(n)].$

This notation is used to express that an algorithm **requires** some amount of time.

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

# If I proved ....

# If I proved that SAT requires $\Omega(n^3)$ time would I have solved P vs NP?

(ロト (個) (E) (E) (E) (E) のへの

# If I proved ....

- If I proved that SAT requires  $\Omega(n^3)$  time would I have solved P vs NP?
- No. SAT could still be in time  $n^4$ .



# If I proved ...

If I proved that SAT requires  $\Omega(n^3)$  time would I have solved P vs NP?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

- No. SAT could still be in time  $n^4$ .
- If I proved that SAT requires  $n^{\Omega(\log \log \log n)}$  time would I have solved P vs NP?

# If I proved ...

If I proved that SAT requires  $\Omega(n^3)$  time would I have solved P vs NP?

No. SAT could still be in time  $n^4$ .

If I proved that SAT requires  $n^{\Omega(\log \log \log n)}$  time would I have solved P vs NP?

Yes. That function is bigger than any poly. But result would be odd since people REALLY think SAT requires  $2^{\Omega(n)}$ .

ション ふゆ アメリア メリア しょうくしゃ

# If I proved ...

If I proved that SAT requires  $\Omega(n^3)$  time would I have solved P vs NP?

No. SAT could still be in time  $n^4$ .

If I proved that SAT requires  $n^{\Omega(\log \log \log n)}$  time would I have solved P vs NP?

Yes. That function is bigger than any poly. But result would be odd since people REALLY think SAT requires  $2^{\Omega(n)}$ .

You would still get the \$1,000,000.