
Review for Midterm



Problem on Domains

For each of the following sentences
a) Give an infinite domain where it is TRUE OR prove there is no
infinite domain where it is TRUE.

b) Give an finite domain with at least three elements where it is
TRUE OR prove there is no finite domain with at least three
elements where it is TRUE.

1. (∀x)(∃y)[x + y = 0].

2. (∀x)(∃y)[xy = 1].
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Problems on Domains (cont)

a) (∀x)(∃y)[x + y = 0].
INFINITE DOMAINS WHERE TRUE: Q, R, Z.
FINITE DOMAIN WHERE TRUE: {−1, 0, 1}.
Can make bigger:
{−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5}.
b) (∀x)(∃y)[xy = 1].
INFINITE DOMAINS WHERE TRUE: Q− {0}, R− {0}
FINITE DOMAINS WHERE TRUE: {12 , 1, 2}.
Can make bigger:
{15 ,

1
4 ,

1
3 ,

1
2 , 1, 2, 3, 4, 5}
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Truth Table (TT) Problem

Consider the following arithmetic function:

f (x1, x2, x3, x4, x5, x6, x7) =

{
T if exactly ONE input is T

F otherwise
(1)

a) How many rows are in the TT for f ? 27.
b) How would you do a TT without looking at all 27 rows?
JUST write down the rows that output T. They are the rows that
have exactly 1 var T so there are only 7 of them.
c) Based on your observation from part (c), describe a way to
build the circuit for f WITHOUT doing the TT for f .
For the SEVEN rows that say T, have an AND gate that makes
just that row true, and OR them all together.
d) Use your method to draw a the circuit for f . OMITTED.



Truth Table (TT) Problem

Consider the following arithmetic function:

f (x1, x2, x3, x4, x5, x6, x7) =

{
T if exactly ONE input is T

F otherwise
(1)

a) How many rows are in the TT for f ?

27.
b) How would you do a TT without looking at all 27 rows?
JUST write down the rows that output T. They are the rows that
have exactly 1 var T so there are only 7 of them.
c) Based on your observation from part (c), describe a way to
build the circuit for f WITHOUT doing the TT for f .
For the SEVEN rows that say T, have an AND gate that makes
just that row true, and OR them all together.
d) Use your method to draw a the circuit for f . OMITTED.



Truth Table (TT) Problem

Consider the following arithmetic function:

f (x1, x2, x3, x4, x5, x6, x7) =

{
T if exactly ONE input is T

F otherwise
(1)

a) How many rows are in the TT for f ? 27.

b) How would you do a TT without looking at all 27 rows?
JUST write down the rows that output T. They are the rows that
have exactly 1 var T so there are only 7 of them.
c) Based on your observation from part (c), describe a way to
build the circuit for f WITHOUT doing the TT for f .
For the SEVEN rows that say T, have an AND gate that makes
just that row true, and OR them all together.
d) Use your method to draw a the circuit for f . OMITTED.



Truth Table (TT) Problem

Consider the following arithmetic function:

f (x1, x2, x3, x4, x5, x6, x7) =

{
T if exactly ONE input is T

F otherwise
(1)

a) How many rows are in the TT for f ? 27.
b) How would you do a TT without looking at all 27 rows?

JUST write down the rows that output T. They are the rows that
have exactly 1 var T so there are only 7 of them.
c) Based on your observation from part (c), describe a way to
build the circuit for f WITHOUT doing the TT for f .
For the SEVEN rows that say T, have an AND gate that makes
just that row true, and OR them all together.
d) Use your method to draw a the circuit for f . OMITTED.



Truth Table (TT) Problem

Consider the following arithmetic function:

f (x1, x2, x3, x4, x5, x6, x7) =

{
T if exactly ONE input is T

F otherwise
(1)

a) How many rows are in the TT for f ? 27.
b) How would you do a TT without looking at all 27 rows?
JUST write down the rows that output T. They are the rows that
have exactly 1 var T so there are only 7 of them.

c) Based on your observation from part (c), describe a way to
build the circuit for f WITHOUT doing the TT for f .
For the SEVEN rows that say T, have an AND gate that makes
just that row true, and OR them all together.
d) Use your method to draw a the circuit for f . OMITTED.



Truth Table (TT) Problem

Consider the following arithmetic function:

f (x1, x2, x3, x4, x5, x6, x7) =

{
T if exactly ONE input is T

F otherwise
(1)

a) How many rows are in the TT for f ? 27.
b) How would you do a TT without looking at all 27 rows?
JUST write down the rows that output T. They are the rows that
have exactly 1 var T so there are only 7 of them.
c) Based on your observation from part (c), describe a way to
build the circuit for f WITHOUT doing the TT for f .

For the SEVEN rows that say T, have an AND gate that makes
just that row true, and OR them all together.
d) Use your method to draw a the circuit for f . OMITTED.



Truth Table (TT) Problem

Consider the following arithmetic function:

f (x1, x2, x3, x4, x5, x6, x7) =

{
T if exactly ONE input is T

F otherwise
(1)

a) How many rows are in the TT for f ? 27.
b) How would you do a TT without looking at all 27 rows?
JUST write down the rows that output T. They are the rows that
have exactly 1 var T so there are only 7 of them.
c) Based on your observation from part (c), describe a way to
build the circuit for f WITHOUT doing the TT for f .
For the SEVEN rows that say T, have an AND gate that makes
just that row true, and OR them all together.

d) Use your method to draw a the circuit for f . OMITTED.



Truth Table (TT) Problem

Consider the following arithmetic function:

f (x1, x2, x3, x4, x5, x6, x7) =

{
T if exactly ONE input is T

F otherwise
(1)

a) How many rows are in the TT for f ? 27.
b) How would you do a TT without looking at all 27 rows?
JUST write down the rows that output T. They are the rows that
have exactly 1 var T so there are only 7 of them.
c) Based on your observation from part (c), describe a way to
build the circuit for f WITHOUT doing the TT for f .
For the SEVEN rows that say T, have an AND gate that makes
just that row true, and OR them all together.
d) Use your method to draw a the circuit for f .

OMITTED.



Truth Table (TT) Problem

Consider the following arithmetic function:

f (x1, x2, x3, x4, x5, x6, x7) =

{
T if exactly ONE input is T

F otherwise
(1)

a) How many rows are in the TT for f ? 27.
b) How would you do a TT without looking at all 27 rows?
JUST write down the rows that output T. They are the rows that
have exactly 1 var T so there are only 7 of them.
c) Based on your observation from part (c), describe a way to
build the circuit for f WITHOUT doing the TT for f .
For the SEVEN rows that say T, have an AND gate that makes
just that row true, and OR them all together.
d) Use your method to draw a the circuit for f . OMITTED.



Truth Table Problem (cont)

e) You avoided writing down a TT! Name a function g(x1, . . . , xn)
where your trick would save you LOTS of time.

f (x1, . . . , xn) =

{
T if exactly ONE of the inputs is T

F otherwise
(2)

Only n rows are true.

f) Name a function h(x1, . . . , xn) where the trick would NOT save
LOTS of time. Explain why.

f (x1, . . . , xn) =

{
T if exactly bn/2c of the inputs is T

F otherwise
(3)

LOTS of rows are T, actually
( n
n/2

)
∼ 2n√

n
.
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Quantifiers

In this problem the domain is the natural numbers and the
language has the usual logical symbols and arithmetic operations.

a) A number is cool if it can be written as the sum of ≤ 3 cubes.
Let COOL(x) mean that x is cool. Write a formula for COOL(x).

COOL(x) ≡ (∃y1, y2, y3)[x = y31 + y32 + y33 ].

b) Express There exists ∞ number of numbers that are NOT cool

(∀x)(∃y)[y > x ∧ ¬COOL(y)]

c) Give 2 examples of cool numbers. Prove that they are cool.
1 = 13, 2 = 13 + 13
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Quantifiers

d) Give 2 examples of numbers that are not cool. Prove that they
are not cool.
4,5 are NOT cool. We show 4 not cool, 5 is similar.
Assume, by way of contradiction, that 4 is cool.

4 = x3 + y3 + z3.

x , y , z ≤ 1 since if (say) x ≥ 2 then 4 ≥ 23 = 8 which is not true.
Hence x3 + y3 + z3 ≤ 3 < 4.
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Combinatorics Problem

a) Let x , y ≥ 10. There are x males and y females on the
committee to revise CMSC 250. Let 1 ≤ x ′ ≤ x and 1 ≤ y ′ ≤ y .

The dean will choose a subcommittee of x ′ males and y ′ females.

How many ways can the Dean do this?(
x

x ′

)(
y

y ′

)
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Combinatorics Problem

b) The Dean does not want Alice (a female) and Bob (a male) to
both be on the subcommittee. NOW how many ways can the
Dean choose the subcommittee.

There are three disjoint cases:

Alice is on the subcommittee but Bob is not:(x−1
x ′

)( y−1
y ′−1

)
Bob is on the subcommittee but Alice is not:( x−1
x ′−1

)(y−1
y ′

)
Neither is on the subcommittee(x−1

x ′

)(y−1
y ′

)
So the answer is(

x − 1

x ′

)(
y − 1

y ′ − 1

)
+

(
x − 1

x ′ − 1

)(
y − 1

y ′

)
+

(
x − 1

x ′

)(
y − 1

y ′

)
.
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Combinatorics: Coefficients

What is the coefficient of x10y5 in

(x + 2y)15

The number of terms that have 10 x ’s and 5 y ’s is
(15
10

)
. But every

time you get a y you also get a 2, so its(
15

10

)
25
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Combinatorics: Pigeon Hole Principle

k , n ∈ N, 3 ≤ k ≤ n. Fill in the BLANK with a function of k , n.
Describe your reasoning.

If A ⊆ {1, . . . , n} and |A| = k then at least BLANK subsets of A
OF SIZE 3 have the same SUM.

Make BLANK as large as possible using the methods of this course.

There are
(k
3

)
subsets of A OF SIZE 3.

Min sum: 1 + 2 + 3 = 6.
Max sum: n + (n − 1) + (n − 2) = 3n − 3.
Numb of sums: 3n − 8.

Number of sets that have the same sum is at least

⌈
(k3)
3n−8

⌉
.
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Combinatorics: Kenny Rogers

Let r , s ≥ 5. We have cards. Here are our rules:

Every card has a rank: a number in {1, . . . , r}
Every card has a suit: a symbol in {S1, . . . ,Ss}.
A hand is 4 cards.

A Straight is 4 cards with consecutive ranks, allowing wraparound.
For example (r − 1,S1), (r ,S1), (1, S2), (2,S3). This DOES NOT
include the case where all suits are the same.

A Flush is 4 cards of the same suit. For example (1,S1), (3,S1),
(4, S1), (r ,S1). This DOES NOT include the case where the hand
is also a straight.

A Straight Flush is 4 cards that are both a straight and a flush.
For example (3,S1), (4,S1), (5,S1), (6, S1).
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More Kenny Rogers

a) What is the prob of a straight flush?

We use in all of the solutions that the number of hands is
(rs
4

)
.

What is the prob of a straight flush?

A straight flush is determined by the first card’s rank AND the
suit. So thats rs hands that are straight flushes. Hence the prob is

rs(rs
4

)
b) What is the prob of a straight?

A straight is determined by the first card’s rank and then 4 suits.
So thats rs4. Hence the prob, removing straight flushes, is

rs4 − rs(rs
4

) .
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More Kenny Rogers

c) What is the prob of a flush?

A flush is determined by the suit and then 4 cards of that suit, so
thats s

(r
4

)
. Hence the prob, removing straight flushes, is

s
(r
4
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More Kenny Rogers

d) Give (r , s) with r , s ≥ 5 so that if r ranks and s suits then the
prob(flush)<prob(straight).

s

(
r

4

)
− rs < rs4 − rs

r !

4!(r − 4)!
< rs3

r(r − 1)(r − 2)(r − 3)

4!
< rs3

(r − 1)(r − 2)(r − 3)

4!
< s3

Suffices to make r3 < s3, so r < s.



More Kenny Rogers
e) Give (r , s) with r , s ≥ 5 so that if r ranks and s suits then the
prob(flush)>prob(straight).

s

(
r

4

)
> rs4

r !

4!(r − 4)!
> rs3

(r − 1)(r − 2)(r − 3)

4!
> s3 Suffices to make

(r − 3)3

24
> s3

(r − 3)3 > 24s3 = (241/3s)3

r − 3 > 241/3s Suffice to take r − 3 > 3s

Take r = 19 and s = 5.


