Review for Midterm

Problem on Domains

For each of the following sentences
a) Give an infinite domain where it is TRUE OR prove there is no infinite domain where it is TRUE.

Problem on Domains

For each of the following sentences
a) Give an infinite domain where it is TRUE OR prove there is no infinite domain where it is TRUE.
b) Give an finite domain with at least three elements where it is TRUE OR prove there is no finite domain with at least three elements where it is TRUE.

Problem on Domains

For each of the following sentences
a) Give an infinite domain where it is TRUE OR prove there is no infinite domain where it is TRUE.
b) Give an finite domain with at least three elements where it is TRUE OR prove there is no finite domain with at least three elements where it is TRUE.

1. $(\forall x)(\exists y)[x+y=0]$.

Problem on Domains

For each of the following sentences
a) Give an infinite domain where it is TRUE OR prove there is no infinite domain where it is TRUE.
b) Give an finite domain with at least three elements where it is TRUE OR prove there is no finite domain with at least three elements where it is TRUE.

1. $(\forall x)(\exists y)[x+y=0]$.
2. $(\forall x)(\exists y)[x y=1]$.

Problems on Domains (cont)

Problems on Domains (cont)

a) $(\forall x)(\exists y)[x+y=0]$.

Problems on Domains (cont)

a) $(\forall x)(\exists y)[x+y=0]$.

INFINITE DOMAINS WHERE TRUE: $\mathbb{Q}, \mathbb{R}, \mathbb{Z}$.

Problems on Domains (cont)

a) $(\forall x)(\exists y)[x+y=0]$.

INFINITE DOMAINS WHERE TRUE: $\mathbb{Q}, \mathbb{R}, \mathbb{Z}$.
FINITE DOMAIN WHERE TRUE: $\{-1,0,1\}$.

Problems on Domains (cont)

a) $(\forall x)(\exists y)[x+y=0]$.

INFINITE DOMAINS WHERE TRUE: $\mathbb{Q}, \mathbb{R}, \mathbb{Z}$.
FINITE DOMAIN WHERE TRUE: $\{-1,0,1\}$.
Can make bigger:

Problems on Domains (cont)

a) $(\forall x)(\exists y)[x+y=0]$.

INFINITE DOMAINS WHERE TRUE: $\mathbb{Q}, \mathbb{R}, \mathbb{Z}$.
FINITE DOMAIN WHERE TRUE: $\{-1,0,1\}$.
Can make bigger:
$\{-5,-4,-3,-2,-1,0,1,2,3,4,5\}$.

Problems on Domains (cont)

a) $(\forall x)(\exists y)[x+y=0]$.

INFINITE DOMAINS WHERE TRUE: $\mathbb{Q}, \mathbb{R}, \mathbb{Z}$.
FINITE DOMAIN WHERE TRUE: $\{-1,0,1\}$.
Can make bigger:
$\{-5,-4,-3,-2,-1,0,1,2,3,4,5\}$.
b) $(\forall x)(\exists y)[x y=1]$.

Problems on Domains (cont)

a) $(\forall x)(\exists y)[x+y=0]$.

INFINITE DOMAINS WHERE TRUE: $\mathbb{Q}, \mathbb{R}, \mathbb{Z}$.
FINITE DOMAIN WHERE TRUE: $\{-1,0,1\}$.
Can make bigger:
$\{-5,-4,-3,-2,-1,0,1,2,3,4,5\}$.
b) $(\forall x)(\exists y)[x y=1]$.

INFINITE DOMAINS WHERE TRUE: $\mathbb{Q}-\{0\}, \mathbb{R}-\{0\}$

Problems on Domains (cont)

a) $(\forall x)(\exists y)[x+y=0]$.

INFINITE DOMAINS WHERE TRUE: $\mathbb{Q}, \mathbb{R}, \mathbb{Z}$.
FINITE DOMAIN WHERE TRUE: $\{-1,0,1\}$.
Can make bigger:
$\{-5,-4,-3,-2,-1,0,1,2,3,4,5\}$.
b) $(\forall x)(\exists y)[x y=1]$.

INFINITE DOMAINS WHERE TRUE: $\mathbb{Q}-\{0\}, \mathbb{R}-\{0\}$
FINITE DOMAINS WHERE TRUE: $\left\{\frac{1}{2}, 1,2\right\}$.

Problems on Domains (cont)

a) $(\forall x)(\exists y)[x+y=0]$.

INFINITE DOMAINS WHERE TRUE: $\mathbb{Q}, \mathbb{R}, \mathbb{Z}$.
FINITE DOMAIN WHERE TRUE: $\{-1,0,1\}$.
Can make bigger:
$\{-5,-4,-3,-2,-1,0,1,2,3,4,5\}$.
b) $(\forall x)(\exists y)[x y=1]$.

INFINITE DOMAINS WHERE TRUE: $\mathbb{Q}-\{0\}, \mathbb{R}-\{0\}$
FINITE DOMAINS WHERE TRUE: $\left\{\frac{1}{2}, 1,2\right\}$.
Can make bigger:

Problems on Domains (cont)

a) $(\forall x)(\exists y)[x+y=0]$.

INFINITE DOMAINS WHERE TRUE: $\mathbb{Q}, \mathbb{R}, \mathbb{Z}$.
FINITE DOMAIN WHERE TRUE: $\{-1,0,1\}$.
Can make bigger:
$\{-5,-4,-3,-2,-1,0,1,2,3,4,5\}$.
b) $(\forall x)(\exists y)[x y=1]$.

INFINITE DOMAINS WHERE TRUE: $\mathbb{Q}-\{0\}, \mathbb{R}-\{0\}$
FINITE DOMAINS WHERE TRUE: $\left\{\frac{1}{2}, 1,2\right\}$.
Can make bigger:
$\left\{\frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, 1,2,3,4,5\right\}$

Truth Table (TT) Problem

Consider the following arithmetic function:

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)= \begin{cases}T & \text { if exactly ONE input is } T \tag{1}\\ F & \text { otherwise }\end{cases}
$$

Truth Table (TT) Problem

Consider the following arithmetic function:

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)= \begin{cases}T & \text { if exactly ONE input is } T \tag{1}\\ F & \text { otherwise }\end{cases}
$$

a) How many rows are in the TT for f ?

Truth Table (TT) Problem

Consider the following arithmetic function:

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)= \begin{cases}T & \text { if exactly ONE input is } T \tag{1}\\ F & \text { otherwise }\end{cases}
$$

a) How many rows are in the TT for f ? 2^{7}.

Truth Table (TT) Problem

Consider the following arithmetic function:

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)= \begin{cases}T & \text { if exactly ONE input is } T \tag{1}\\ F & \text { otherwise }\end{cases}
$$

a) How many rows are in the TT for f ? 2^{7}.
b) How would you do a TT without looking at all 2^{7} rows?

Truth Table (TT) Problem

Consider the following arithmetic function:

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)= \begin{cases}T & \text { if exactly ONE input is } \mathrm{T} \tag{1}\\ F & \text { otherwise }\end{cases}
$$

a) How many rows are in the TT for f ? 2^{7}.
b) How would you do a TT without looking at all 2^{7} rows?

JUST write down the rows that output T . They are the rows that have exactly 1 var T so there are only 7 of them.

Truth Table (TT) Problem

Consider the following arithmetic function:

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)= \begin{cases}T & \text { if exactly ONE input is } T \tag{1}\\ F & \text { otherwise }\end{cases}
$$

a) How many rows are in the TT for f ? 2^{7}.
b) How would you do a TT without looking at all 2^{7} rows?

JUST write down the rows that output T . They are the rows that have exactly 1 var T so there are only 7 of them.
c) Based on your observation from part (c), describe a way to build the circuit for f WITHOUT doing the TT for f.

Truth Table (TT) Problem

Consider the following arithmetic function:

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)= \begin{cases}T & \text { if exactly ONE input is } T \tag{1}\\ F & \text { otherwise }\end{cases}
$$

a) How many rows are in the TT for f ? 2^{7}.
b) How would you do a TT without looking at all 2^{7} rows?

JUST write down the rows that output T . They are the rows that have exactly 1 var T so there are only 7 of them.
c) Based on your observation from part (c), describe a way to build the circuit for f WITHOUT doing the TT for f.
For the SEVEN rows that say T, have an AND gate that makes just that row true, and OR them all together.

Truth Table (TT) Problem

Consider the following arithmetic function:

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)= \begin{cases}T & \text { if exactly ONE input is } \mathrm{T} \tag{1}\\ F & \text { otherwise }\end{cases}
$$

a) How many rows are in the TT for f ? 2^{7}.
b) How would you do a TT without looking at all 2^{7} rows?

JUST write down the rows that output T . They are the rows that have exactly 1 var T so there are only 7 of them.
c) Based on your observation from part (c), describe a way to build the circuit for f WITHOUT doing the TT for f.
For the SEVEN rows that say T, have an AND gate that makes just that row true, and OR them all together.
d) Use your method to draw a the circuit for f.

Truth Table (TT) Problem

Consider the following arithmetic function:

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)= \begin{cases}T & \text { if exactly ONE input is } \mathrm{T} \tag{1}\\ F & \text { otherwise }\end{cases}
$$

a) How many rows are in the TT for f ? 2^{7}.
b) How would you do a TT without looking at all 2^{7} rows?

JUST write down the rows that output T . They are the rows that have exactly 1 var T so there are only 7 of them.
c) Based on your observation from part (c), describe a way to build the circuit for f WITHOUT doing the TT for f.
For the SEVEN rows that say T, have an AND gate that makes just that row true, and OR them all together.
d) Use your method to draw a the circuit for f. OMITTED.

Truth Table Problem (cont)

e) You avoided writing down a TT! Name a function $g\left(x_{1}, \ldots, x_{n}\right)$ where your trick would save you LOTS of time.

Truth Table Problem (cont)

e) You avoided writing down a TT! Name a function $g\left(x_{1}, \ldots, x_{n}\right)$ where your trick would save you LOTS of time.

$$
f\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}T & \text { if exactly ONE of the inputs is } \mathrm{T} \tag{2}\\ F & \text { otherwise }\end{cases}
$$

Truth Table Problem (cont)

e) You avoided writing down a TT! Name a function $g\left(x_{1}, \ldots, x_{n}\right)$ where your trick would save you LOTS of time.

$$
f\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}T & \text { if exactly ONE of the inputs is } \mathrm{T} \tag{2}\\ F & \text { otherwise }\end{cases}
$$

Only n rows are true.

Truth Table Problem (cont)

e) You avoided writing down a TT! Name a function $g\left(x_{1}, \ldots, x_{n}\right)$ where your trick would save you LOTS of time.

$$
f\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}T & \text { if exactly ONE of the inputs is } T \tag{2}\\ F & \text { otherwise }\end{cases}
$$

Only n rows are true.
f) Name a function $h\left(x_{1}, \ldots, x_{n}\right)$ where the trick would NOT save LOTS of time. Explain why.

Truth Table Problem (cont)

e) You avoided writing down a TT! Name a function $g\left(x_{1}, \ldots, x_{n}\right)$ where your trick would save you LOTS of time.

$$
f\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}T & \text { if exactly ONE of the inputs is } T \tag{2}\\ F & \text { otherwise }\end{cases}
$$

Only n rows are true.
f) Name a function $h\left(x_{1}, \ldots, x_{n}\right)$ where the trick would NOT save LOTS of time. Explain why.

$$
f\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}T & \text { if exactly }\lfloor n / 2\rfloor \text { of the inputs is } T \tag{3}\\ F & \text { otherwise }\end{cases}
$$

Truth Table Problem (cont)

e) You avoided writing down a TT! Name a function $g\left(x_{1}, \ldots, x_{n}\right)$ where your trick would save you LOTS of time.

$$
f\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}T & \text { if exactly ONE of the inputs is } T \tag{2}\\ F & \text { otherwise }\end{cases}
$$

Only n rows are true.
f) Name a function $h\left(x_{1}, \ldots, x_{n}\right)$ where the trick would NOT save LOTS of time. Explain why.

$$
f\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}T & \text { if exactly }\lfloor n / 2\rfloor \text { of the inputs is } T \tag{3}\\ F & \text { otherwise }\end{cases}
$$

LOTS of rows are T, actually $\binom{n}{n / 2} \sim \frac{2^{n}}{\sqrt{n}}$.

Quantifiers

In this problem the domain is the natural numbers and the language has the usual logical symbols and arithmetic operations.

Quantifiers

In this problem the domain is the natural numbers and the language has the usual logical symbols and arithmetic operations.
a) A number is cool if it can be written as the sum of ≤ 3 cubes. Let $\operatorname{COOL}(x)$ mean that x is cool. Write a formula for $\operatorname{COOL}(x)$.

Quantifiers

In this problem the domain is the natural numbers and the language has the usual logical symbols and arithmetic operations.
a) A number is cool if it can be written as the sum of ≤ 3 cubes. Let $\operatorname{COOL}(x)$ mean that x is cool. Write a formula for $\operatorname{COOL}(x)$.

$$
\operatorname{COOL}(x) \equiv\left(\exists y_{1}, y_{2}, y_{3}\right)\left[x=y_{1}^{3}+y_{2}^{3}+y_{3}^{3}\right]
$$

Quantifiers

In this problem the domain is the natural numbers and the language has the usual logical symbols and arithmetic operations.
a) A number is cool if it can be written as the sum of ≤ 3 cubes. Let $\operatorname{COOL}(x)$ mean that x is cool. Write a formula for $\operatorname{COOL}(x)$.

$$
\operatorname{COOL}(x) \equiv\left(\exists y_{1}, y_{2}, y_{3}\right)\left[x=y_{1}^{3}+y_{2}^{3}+y_{3}^{3}\right] .
$$

b) Express There exists ∞ number of numbers that are NOT cool

Quantifiers

In this problem the domain is the natural numbers and the language has the usual logical symbols and arithmetic operations.
a) A number is cool if it can be written as the sum of ≤ 3 cubes. Let $\operatorname{COOL}(x)$ mean that x is cool. Write a formula for $\operatorname{COOL}(x)$.

$$
\operatorname{COOL}(x) \equiv\left(\exists y_{1}, y_{2}, y_{3}\right)\left[x=y_{1}^{3}+y_{2}^{3}+y_{3}^{3}\right] .
$$

b) Express There exists ∞ number of numbers that are NOT cool

$$
(\forall x)(\exists y)[y>x \wedge \neg \operatorname{COOL}(y)]
$$

Quantifiers

In this problem the domain is the natural numbers and the language has the usual logical symbols and arithmetic operations.
a) A number is cool if it can be written as the sum of ≤ 3 cubes. Let $\operatorname{COOL}(x)$ mean that x is cool. Write a formula for $\operatorname{COOL}(x)$.

$$
\operatorname{COOL}(x) \equiv\left(\exists y_{1}, y_{2}, y_{3}\right)\left[x=y_{1}^{3}+y_{2}^{3}+y_{3}^{3}\right] .
$$

b) Express There exists ∞ number of numbers that are NOT cool

$$
(\forall x)(\exists y)[y>x \wedge \neg \operatorname{COOL}(y)]
$$

c) Give 2 examples of cool numbers. Prove that they are cool.

Quantifiers

In this problem the domain is the natural numbers and the language has the usual logical symbols and arithmetic operations.
a) A number is cool if it can be written as the sum of ≤ 3 cubes. Let $\operatorname{COOL}(x)$ mean that x is cool. Write a formula for $\operatorname{COOL}(x)$.

$$
\operatorname{COOL}(x) \equiv\left(\exists y_{1}, y_{2}, y_{3}\right)\left[x=y_{1}^{3}+y_{2}^{3}+y_{3}^{3}\right] .
$$

b) Express There exists ∞ number of numbers that are NOT cool

$$
(\forall x)(\exists y)[y>x \wedge \neg \operatorname{COOL}(y)]
$$

c) Give 2 examples of cool numbers. Prove that they are cool.
$1=1^{3}, 2=1^{3}+1^{3}$

Quantifiers

Quantifiers

d) Give 2 examples of numbers that are not cool. Prove that they are not cool.
4,5 are NOT cool. We show 4 not cool, 5 is similar.

Quantifiers

d) Give 2 examples of numbers that are not cool. Prove that they are not cool.
4,5 are NOT cool. We show 4 not cool, 5 is similar.
Assume, by way of contradiction, that 4 is cool.

Quantifiers

d) Give 2 examples of numbers that are not cool. Prove that they are not cool.
4,5 are NOT cool. We show 4 not cool, 5 is similar.
Assume, by way of contradiction, that 4 is cool.

$$
4=x^{3}+y^{3}+z^{3} .
$$

Quantifiers

d) Give 2 examples of numbers that are not cool. Prove that they are not cool.
4,5 are NOT cool. We show 4 not cool, 5 is similar.
Assume, by way of contradiction, that 4 is cool.

$$
4=x^{3}+y^{3}+z^{3} .
$$

$x, y, z \leq 1$ since if (say) $x \geq 2$ then $4 \geq 2^{3}=8$ which is not true. Hence $x^{3}+y^{3}+z^{3} \leq 3<4$.

Combinatorics Problem

a) Let $x, y \geq 10$. There are x males and y females on the committee to revise CMSC 250. Let $1 \leq x^{\prime} \leq x$ and $1 \leq y^{\prime} \leq y$.

Combinatorics Problem

a) Let $x, y \geq 10$. There are x males and y females on the committee to revise CMSC 250. Let $1 \leq x^{\prime} \leq x$ and $1 \leq y^{\prime} \leq y$. The dean will choose a subcommittee of x^{\prime} males and y^{\prime} females. How many ways can the Dean do this?

Combinatorics Problem

a) Let $x, y \geq 10$. There are x males and y females on the committee to revise CMSC 250. Let $1 \leq x^{\prime} \leq x$ and $1 \leq y^{\prime} \leq y$. The dean will choose a subcommittee of x^{\prime} males and y^{\prime} females. How many ways can the Dean do this?

$$
\binom{x}{x^{\prime}}\binom{y}{y^{\prime}}
$$

Combinatorics Problem

b) The Dean does not want Alice (a female) and Bob (a male) to both be on the subcommittee. NOW how many ways can the Dean choose the subcommittee.

Combinatorics Problem

b) The Dean does not want Alice (a female) and Bob (a male) to both be on the subcommittee. NOW how many ways can the Dean choose the subcommittee.
There are three disjoint cases:

Combinatorics Problem

b) The Dean does not want Alice (a female) and Bob (a male) to both be on the subcommittee. NOW how many ways can the Dean choose the subcommittee.
There are three disjoint cases:
Alice is on the subcommittee but Bob is not: $\binom{x-1}{x^{\prime}}\binom{y-1}{y^{\prime}-1}$

Combinatorics Problem

b) The Dean does not want Alice (a female) and Bob (a male) to both be on the subcommittee. NOW how many ways can the Dean choose the subcommittee.
There are three disjoint cases:
Alice is on the subcommittee but Bob is not: $\binom{x-1}{x^{\prime}}\binom{y-1}{y^{\prime}-1}$
Bob is on the subcommittee but Alice is not: $\binom{x-1}{x^{\prime}-1}\binom{y-1}{y^{\prime}}$

Combinatorics Problem

b) The Dean does not want Alice (a female) and Bob (a male) to both be on the subcommittee. NOW how many ways can the Dean choose the subcommittee.
There are three disjoint cases:
Alice is on the subcommittee but Bob is not: $\binom{x-1}{x^{\prime}}\binom{y-1}{y^{\prime}-1}$
Bob is on the subcommittee but Alice is not: $\binom{x-1}{x^{\prime}-1}\binom{y-1}{y^{\prime}}$
Neither is on the subcommittee $\binom{x-1}{x^{\prime}}\binom{y-1}{y^{\prime}}$

Combinatorics Problem

b) The Dean does not want Alice (a female) and Bob (a male) to both be on the subcommittee. NOW how many ways can the Dean choose the subcommittee.
There are three disjoint cases:
Alice is on the subcommittee but Bob is not: $\binom{x-1}{x^{\prime}}\binom{y-1}{y^{\prime}-1}$
Bob is on the subcommittee but Alice is not: $\binom{x-1}{x^{\prime}-1}\binom{y-1}{y^{\prime}}$
Neither is on the subcommittee $\binom{x-1}{x^{\prime}}\binom{y-1}{y^{\prime}}$
So the answer is

$$
\binom{x-1}{x^{\prime}}\binom{y-1}{y^{\prime}-1}+\binom{x-1}{x^{\prime}-1}\binom{y-1}{y^{\prime}}+\binom{x-1}{x^{\prime}}\binom{y-1}{y^{\prime}} .
$$

Combinatorics: Coefficients

What is the coefficient of $x^{10} y^{5}$ in

$$
(x+2 y)^{15}
$$

Combinatorics: Coefficients

What is the coefficient of $x^{10} y^{5}$ in

$$
(x+2 y)^{15}
$$

The number of terms that have $10 x$'s and $5 y$'s is $\binom{15}{10}$. But every time you get a y you also get a 2, so its

Combinatorics: Coefficients

What is the coefficient of $x^{10} y^{5}$ in

$$
(x+2 y)^{15}
$$

The number of terms that have $10 x$'s and $5 y$'s is $\binom{15}{10}$. But every time you get a y you also get a 2, so its

$$
\binom{15}{10} 2^{5}
$$

Combinatorics: Pigeon Hole Principle

$k, n \in \mathbb{N}, 3 \leq k \leq n$. Fill in the BLANK with a function of k, n.
Describe your reasoning.

Combinatorics: Pigeon Hole Principle

$k, n \in \mathbb{N}, 3 \leq k \leq n$. Fill in the BLANK with a function of k, n.
Describe your reasoning.
If $A \subseteq\{1, \ldots, n\}$ and $|A|=k$ then at least BLANK subsets of A OF SIZE 3 have the same SUM.

Combinatorics: Pigeon Hole Principle

$k, n \in \mathbb{N}, 3 \leq k \leq n$. Fill in the BLANK with a function of k, n.
Describe your reasoning.
If $A \subseteq\{1, \ldots, n\}$ and $|A|=k$ then at least BLANK subsets of A OF SIZE 3 have the same SUM.

Make BLANK as large as possible using the methods of this course.

Combinatorics: Pigeon Hole Principle

$k, n \in \mathbb{N}, 3 \leq k \leq n$. Fill in the BLANK with a function of k, n.
Describe your reasoning.
If $A \subseteq\{1, \ldots, n\}$ and $|A|=k$ then at least BLANK subsets of A OF SIZE 3 have the same SUM.

Make BLANK as large as possible using the methods of this course.
There are $\binom{k}{3}$ subsets of A OF SIZE 3.

Combinatorics: Pigeon Hole Principle

$k, n \in \mathbb{N}, 3 \leq k \leq n$. Fill in the BLANK with a function of k, n.
Describe your reasoning.
If $A \subseteq\{1, \ldots, n\}$ and $|A|=k$ then at least BLANK subsets of A OF SIZE 3 have the same SUM.

Make BLANK as large as possible using the methods of this course.
There are $\binom{k}{3}$ subsets of A OF SIZE 3.
Min sum: $1+2+3=6$.

Combinatorics: Pigeon Hole Principle

$k, n \in \mathbb{N}, 3 \leq k \leq n$. Fill in the BLANK with a function of k, n.
Describe your reasoning.
If $A \subseteq\{1, \ldots, n\}$ and $|A|=k$ then at least BLANK subsets of A OF SIZE 3 have the same SUM.

Make BLANK as large as possible using the methods of this course.
There are $\binom{k}{3}$ subsets of A OF SIZE 3.
Min sum: $1+2+3=6$.
Max sum: $n+(n-1)+(n-2)=3 n-3$.

Combinatorics: Pigeon Hole Principle

$k, n \in \mathbb{N}, 3 \leq k \leq n$. Fill in the BLANK with a function of k, n.
Describe your reasoning.
If $A \subseteq\{1, \ldots, n\}$ and $|A|=k$ then at least BLANK subsets of A OF SIZE 3 have the same SUM.

Make BLANK as large as possible using the methods of this course.
There are $\binom{k}{3}$ subsets of A OF SIZE 3.
Min sum: $1+2+3=6$.
Max sum: $n+(n-1)+(n-2)=3 n-3$.
Numb of sums: $3 n-8$.

Combinatorics: Pigeon Hole Principle

$k, n \in \mathbb{N}, 3 \leq k \leq n$. Fill in the BLANK with a function of k, n.
Describe your reasoning.
If $A \subseteq\{1, \ldots, n\}$ and $|A|=k$ then at least BLANK subsets of A OF SIZE 3 have the same SUM.

Make BLANK as large as possible using the methods of this course.
There are $\binom{k}{3}$ subsets of A OF SIZE 3.
Min sum: $1+2+3=6$.
Max sum: $n+(n-1)+(n-2)=3 n-3$.
Numb of sums: $3 n-8$.
Number of sets that have the same sum is at least $\left[\begin{array}{c}\binom{k}{3} \\ 3 n-8\end{array}\right]$.

Combinatorics: Kenny Rogers

Let $r, s \geq 5$. We have cards. Here are our rules:

Combinatorics: Kenny Rogers

Let $r, s \geq 5$. We have cards. Here are our rules:
Every card has a rank: a number in $\{1, \ldots, r\}$

Combinatorics: Kenny Rogers

Let $r, s \geq 5$. We have cards. Here are our rules:
Every card has a rank: a number in $\{1, \ldots, r\}$ Every card has a suit: a symbol in $\left\{S_{1}, \ldots, S_{s}\right\}$.

Combinatorics: Kenny Rogers

Let $r, s \geq 5$. We have cards. Here are our rules:
Every card has a rank: a number in $\{1, \ldots, r\}$ Every card has a suit: a symbol in $\left\{S_{1}, \ldots, S_{s}\right\}$. A hand is 4 cards.

Combinatorics: Kenny Rogers

Let $r, s \geq 5$. We have cards. Here are our rules:
Every card has a rank: a number in $\{1, \ldots, r\}$ Every card has a suit: a symbol in $\left\{S_{1}, \ldots, S_{s}\right\}$.
A hand is 4 cards.
A Straight is 4 cards with consecutive ranks, allowing wraparound. For example $\left(r-1, S_{1}\right),\left(r, S_{1}\right),\left(1, S_{2}\right),\left(2, S_{3}\right)$. This DOES NOT include the case where all suits are the same.

Combinatorics: Kenny Rogers

Let $r, s \geq 5$. We have cards. Here are our rules:
Every card has a rank: a number in $\{1, \ldots, r\}$
Every card has a suit: a symbol in $\left\{S_{1}, \ldots, S_{s}\right\}$.
A hand is 4 cards.
A Straight is 4 cards with consecutive ranks, allowing wraparound. For example $\left(r-1, S_{1}\right),\left(r, S_{1}\right),\left(1, S_{2}\right),\left(2, S_{3}\right)$. This DOES NOT include the case where all suits are the same.
A Flush is 4 cards of the same suit. For example $\left(1, S_{1}\right),\left(3, S_{1}\right)$, $\left(4, S_{1}\right),\left(r, S_{1}\right)$. This DOES NOT include the case where the hand is also a straight.

Combinatorics: Kenny Rogers

Let $r, s \geq 5$. We have cards. Here are our rules:
Every card has a rank: a number in $\{1, \ldots, r\}$
Every card has a suit: a symbol in $\left\{S_{1}, \ldots, S_{s}\right\}$.
A hand is 4 cards.
A Straight is 4 cards with consecutive ranks, allowing wraparound. For example $\left(r-1, S_{1}\right),\left(r, S_{1}\right),\left(1, S_{2}\right),\left(2, S_{3}\right)$. This DOES NOT include the case where all suits are the same.
A Flush is 4 cards of the same suit. For example $\left(1, S_{1}\right),\left(3, S_{1}\right)$, $\left(4, S_{1}\right),\left(r, S_{1}\right)$. This DOES NOT include the case where the hand is also a straight.
A Straight Flush is 4 cards that are both a straight and a flush. For example $\left(3, S_{1}\right),\left(4, S_{1}\right),\left(5, S_{1}\right),\left(6, S_{1}\right)$.

More Kenny Rogers

a) What is the prob of a straight flush?

More Kenny Rogers

a) What is the prob of a straight flush?

We use in all of the solutions that the number of hands is $\binom{r s}{4}$.

More Kenny Rogers

a) What is the prob of a straight flush?

We use in all of the solutions that the number of hands is $\binom{r s}{4}$.
What is the prob of a straight flush?

More Kenny Rogers

a) What is the prob of a straight flush?

We use in all of the solutions that the number of hands is $\binom{r s}{4}$.
What is the prob of a straight flush?
A straight flush is determined by the first card's rank AND the suit. So thats r s hands that are straight flushes. Hence the prob is

More Kenny Rogers

a) What is the prob of a straight flush?

We use in all of the solutions that the number of hands is $\binom{r s}{4}$.
What is the prob of a straight flush?
A straight flush is determined by the first card's rank AND the suit. So thats r s hands that are straight flushes. Hence the prob is

$$
\frac{r s}{\binom{r s}{4}}
$$

More Kenny Rogers

a) What is the prob of a straight flush?

We use in all of the solutions that the number of hands is $\binom{r s}{4}$.
What is the prob of a straight flush?
A straight flush is determined by the first card's rank AND the suit. So thats r s hands that are straight flushes. Hence the prob is

$$
\frac{r s}{\binom{r s}{4}}
$$

b) What is the prob of a straight?

More Kenny Rogers

a) What is the prob of a straight flush?

We use in all of the solutions that the number of hands is $\binom{r s}{4}$.
What is the prob of a straight flush?
A straight flush is determined by the first card's rank AND the suit. So thats r s hands that are straight flushes. Hence the prob is

$$
\frac{r s}{\binom{r s}{4}}
$$

b) What is the prob of a straight?

A straight is determined by the first card's rank and then 4 suits.
So thats $r s^{4}$. Hence the prob, removing straight flushes, is

More Kenny Rogers

a) What is the prob of a straight flush?

We use in all of the solutions that the number of hands is $\binom{r s}{4}$.
What is the prob of a straight flush?
A straight flush is determined by the first card's rank AND the suit. So thats r s hands that are straight flushes. Hence the prob is

$$
\frac{r s}{\binom{r s}{4}}
$$

b) What is the prob of a straight?

A straight is determined by the first card's rank and then 4 suits.
So thats $r s^{4}$. Hence the prob, removing straight flushes, is

$$
\frac{r s^{4}-r s}{\binom{r s}{4}}
$$

More Kenny Rogers

c) What is the prob of a flush?

More Kenny Rogers

c) What is the prob of a flush?

A flush is determined by the suit and then 4 cards of that suit, so thats $s\binom{r}{4}$. Hence the prob, removing straight flushes, is

More Kenny Rogers

c) What is the prob of a flush?

A flush is determined by the suit and then 4 cards of that suit, so thats $s\binom{r}{4}$. Hence the prob, removing straight flushes, is

$$
\frac{s\binom{r}{4}-r s}{\binom{r s}{4}}
$$

More Kenny Rogers

d) Give (r, s) with $r, s \geq 5$ so that if r ranks and s suits then the prob(flush) $<$ prob(straight).

$$
\begin{gathered}
s\binom{r}{4}-r s<r s^{4}-r s \\
\frac{r!}{4!(r-4)!}<r s^{3} \\
\frac{r(r-1)(r-2)(r-3)}{4!}<r s^{3} \\
\frac{(r-1)(r-2)(r-3)}{4!}<s^{3}
\end{gathered}
$$

Suffices to make $r^{3}<s^{3}$, so $r<s$.

More Kenny Rogers

e) Give (r, s) with $r, s \geq 5$ so that if r ranks and s suits then the prob(flush) $>$ prob(straight).

$$
\begin{gathered}
s\binom{r}{4}>r s^{4} \\
\frac{r!}{4!(r-4)!}>r s^{3} \\
\frac{(r-1)(r-2)(r-3)}{4!}>s^{3} \text { Suffices to make } \\
\frac{(r-3)^{3}}{24}>s^{3} \\
(r-3)^{3}>24 s^{3}=\left(24^{1 / 3} s\right)^{3} \\
r-3>24^{1 / 3} s \text { Suffice to take } r-3>3 s
\end{gathered}
$$

Take $r=19$ and $s=5$.

