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Algorithms on divisibility

1. Modular Exponentiation (Repeated Squaring)
2. Greatest Common Divisor (GCD)



Basic assumptions

• 𝑎 + 𝑏 and 𝑎 ⋅ 𝑏 have unit cost
• This is not true if 𝑎, 𝑏 are too large 



First problem
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How fast can we compute 𝑎𝑛 𝑚𝑜𝑑 𝑚 𝑛,𝑚 ∈ ℕ ?

1. Obviously, we can compute 𝑎𝑛 = 𝑎 × 𝑎 ×⋯× 𝑎 and mod that large 

number by 𝑚.

• Problems:
• Arithmetic overflow in computation of 𝑎𝑛

• Modding a large quantity is tough on the FPU

𝑛 𝑡𝑖𝑚𝑒𝑠
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First problem, second approach

2. We could start computing 𝑎 × 𝑎 ×⋯× 𝑎 until the product 
becomes larger than 𝑚, reduce and repeat until we’re done. 

• Problems:
• Arithmetic overflow in computation of 𝑎𝑛

• Modding a large quantity is tough on the FPU

• Additionally, we have another nice property…
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Example

• Computing 364 𝑚𝑜𝑑 99 in log2 64 = 6 steps.

• All ≡ are ≡ (mod 99).
1. 32

1
≡ 9

2. 32
2
≡ 32 2 ≡ 92 ≡ 81

3. 32
3
≡ 32

2 2
≡ 812 ≡ 27

4. 32
4
≡ 32

3 2
≡ 272 ≡ 36

5. 32
5
≡ 32

4 2
≡ 362 ≡ 9

6. 32
6
≡ 9 2 ≡ 81

• Aha! 364 = 32
6
≡ 81



Good news, bad news

• Good news: By using repeated squaring, can compute 𝑎2
ℓ
𝑚𝑜𝑑 𝑚

quickly (roughly ℓ = log2 2
ℓ steps)

• Bad news: What if our exponent is not a power of 2?



Example

• Computing 327 𝑚𝑜𝑑 99 with the same method

• All ≡ are ≡ (mod 99).
• 31 ≡ 3

• 32 ≡ 9

• 32
2
≡ 32 2 ≡ 92 ≡ 81

• 32
3
≡ 32

2 2
≡ 812 ≡ 27

• 32
4
≡ 32

3 2
≡ 272 ≡ 36

• 327 = 316 × 38 × 32 × 31 ≡ 36 × 27 × 9 × 3



Example (contd.)

• To avoid large numbers, reduce product as you go:

• 327 = 316 × 38 × 32 × 31 ≡ 36 × 27 × 9 × 3 ≡

36 × 27 × 9 × 3 ≡ 81 × 27 ≡ 9



Exercise

• Solve the following for 𝑟 please!

534 ≡ 𝑟 ( 𝑚𝑜𝑑 117)



Algorithm to compute 𝑎𝑛 𝑚𝑜𝑑 𝑚 in log𝑛 steps

• Step 1: Write 𝑛 = 2𝑞1 + 2𝑞2 +⋯+ 2𝑞𝑟, 𝑞1< 𝑞2 < ⋯ < 𝑞𝑟

• Step 2: Note that 𝑎𝑛 = 𝑎2
𝑞1+2𝑞2+⋯+2𝑞𝑟 = 𝑎2

𝑞1 ×⋯× 𝑎2
𝑞𝑟

• Step 3: Use repeated squaring to compute: 

𝑎2
0
, 𝑎2

1
, 𝑎2

2
, … , 𝑎2

𝑞𝑟
𝑚𝑜𝑑 𝑚

using 𝑎2
𝑖+1

≡ 𝑎2
𝑖 2

𝑚𝑜𝑑 𝑚

• Step 4: Compute 𝑎2
𝑞1 ×⋯× 𝑎2

𝑞𝑟
mod m reducing when necessary 

to avoid large numbers 



The key step

• The key step is Step #3: Use repeated squaring to compute: 

𝑎2
0
, 𝑎2

1
, 𝑎2

2
, … , 𝑎2

𝑞𝑟
𝑚𝑜𝑑 𝑚

using 𝑎2
𝑖+1

≡ 𝑎2
𝑖 2

𝑚𝑜𝑑 𝑚

• When computing 𝑎2
𝑖+1

mod m, already have computed 𝑎2
𝑖 2

𝑚𝑜𝑑 𝑚

• Note that all numbers are below 𝑚 because we reduce mod m every step 
of the way

• So 𝑎2
𝑖 2

is unit cost and anything mod m is also unit cost!
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(GCD)

• If 𝑎, 𝑏 ∈ ℕ≠0, then the GCD of 𝑎, 𝑏 is the largest non-zero integer 𝑛

such that 𝑛 |𝑎 and 𝑛 | 𝑏
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Second problem: Greatest Common Divisor 
(GCD)

• If 𝑎, 𝑏 ∈ ℕ≠0, then the GCD of 𝑎, 𝑏 is the largest non-zero integer 𝑛

such that 𝑛 |𝑎 and 𝑛 | 𝑏

• What is the GCD of…
• 10 and 15? 5

• 12 and 90? 6

• 20 and 29? 1 (20 and 29 are called co-prime or relatively prime)

• 153 and 181 1 (also co-prime)



Euclid’s GCD algorithm

• Recall: If 𝑎 ≡ 0 (𝑚𝑜𝑑 𝑚) and 𝑏 ≡ 0 𝑚𝑜𝑑 𝑚 , then 𝑎 − 𝑏 ≡ 0 (𝑚𝑜𝑑 𝑚)

• The GCD algorithm finds the greatest common divisor by executing this 
recursion (assume a > b):

𝐺𝐶𝐷 𝑎, 𝑏 = 𝐺𝐶𝐷 𝑎, 𝑏 − 𝑎

Until its arguments are the same.
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Greatest Common Divisor (GCD)

• Recall: If 𝑎 ≡ 0 (𝑚𝑜𝑑 𝑚) and 𝑏 ≡ 0 𝑚𝑜𝑑 𝑚 , then 𝑎 − 𝑏 ≡ 0 (𝑚𝑜𝑑 𝑚)

• The GCD algorithm finds the greatest common divisor by executing this 
recursion (assume a > b): 

𝐺𝐶𝐷 𝑎, 𝑏 = 𝐺𝐶𝐷 𝑎, 𝑏 − 𝑎

Until its arguments are the same.

• Question: If we implement this in a programming language, it can only be 
done recursively

Yes

(why)

No 

(Why)

Something Else

(What)

left = a;
right = b;
while(left != right){

if(left > right)
left = left – right;

else
right = right - left;

}
print "GCD is: " left; // Or right

Tail 

recursion



GCD example

• GCD(18, 100) =
GCD(18, 100 – 18) = GCD(18, 82)=
GCD(18, 82 – 18 = GCD(18, 64) = 
GCD(18, 64 – 18) = GCD(18, 46) = 
GCD(18, 46 – 18) = GCD(18, 28) =
GCD(18, 28 – 18) = GCD(18, 10) =
GCD(18 - 10, 10) = GCD(8, 10)=
GCD(8, 10 - 8)= GCD(8, 2) =
GCD(8 - 2, 2) = GCD(6, 2) =
GCD(6 - 2, 2) = GCD(4, 2) = 
GCD(4- 2, 2) = GCD(2, 2) = 2
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• GCD(18, 100) =
GCD(18, 100 – 18) = GCD(18, 82)=
GCD(18, 82 – 18 = GCD(18, 64) = 
GCD(18, 64 – 18) = GCD(18, 46) = 
GCD(18, 46 – 18) = GCD(18, 28) =
GCD(18, 28 – 18) = GCD(18, 10) =
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Given integers 𝑎, 𝑏 with 𝑎 > 𝑏 (without loss of 

generality), approximately how many steps 

does this algorithm take?

a steps b steps

Something Elsea-b steps

Roughly 

 𝑎 𝑏



Can we do better?

• GCD(18, 100) =
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Can we do better?

• GCD(18, 100) =
GCD(18, 100 – 18) = GCD(18, 82)=
GCD(18, 82 – 18) = GCD(18, 64) = 
GCD(18, 64 – 18) = GCD(18, 46) = 
GCD(18, 46 – 18) = GCD(18, 28) =
GCD(18, 28 – 18) = GCD(18, 10) =
GCD(18 - 10, 10) = GCD(8, 10)=
GCD(8, 10 - 8)= GCD(8, 2) =
GCD(8 - 2, 2) = GCD(6, 2) =
GCD(6 - 2, 2) = GCD(4, 2) = 
GCD(4- 2, 2) = GCD(2, 2) = 2

Yes No
Something 

Else

GCD(18, 100 – 5 x 18)

GCD(8 – 3 x 2, 2)

GCD(18, 100) =

GCD(18, 100 – 5 x 18) = GCD(18, 

10) =

GCD(18 – 10, 10) = GCD(8, 10) =

GCD(8, 10 - 8) = GCD(8, 2) =

GCD(8 – 3 x 2, 2) = GCD(2, 2) = 2

From 10 to 4 steps!



How fast is this new algorithm?

• Given non-zero integers 𝑎, 𝑏 with 𝑎 > 𝑏, roughly how many steps 
does this new algorithm take to compute GCD(a, b)?

 𝑎 𝑏2 𝑎 Something Elselog2 𝑎



• Given non-zero integers 𝑎, 𝑏 with 𝑎 > 𝑏, roughly how many steps does 
this new algorithm take to compute GCD(a, b)?

• In fact, it takes log𝜙 𝑎, where 𝜙 =
1+ 5

2
is the golden ratio.

• Proof by Gabriel Lamé in 1844, considered by some to be the first ever
result in Algorithmic Complexity theory.

log2 𝑎

How fast is this new algorithm?

 𝑎 𝑏2 𝑎 Something Else
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