START

 RECORDING
Mod Arithmetic

CMSC250

Modular Arithmetic

- We say that $a \equiv b(\bmod m)($ read "a is congruent to $\mathrm{b} \bmod \mathrm{m}$ ") means that $m \mid(a-b)$.
- Examples:
- $6 \equiv 2(\bmod 4)$
- $81 \equiv 0(\bmod 9)$
- $91 \equiv 0(\bmod 13)$
- $100 \equiv 2(\bmod 7)$
- Convention: $0 \leq b \leq m-1$
- THINK: Take large number a, divide by m, remainder is b
- Terminology: "Reducing a mod m"

三 Vs \equiv

- In Logic, $\varphi_{1} \equiv \varphi_{2}$ mean that φ_{1} and φ_{2} have the same truth table (are logically equivalent)
- In Number Theory, $a \equiv b(\bmod m)$, read "a is congruent to
b mod $\left.m^{\prime \prime}\right)$ means $m \mid(a-b)$!

三 Vs \equiv

- In Logic, $\varphi_{1} \equiv \varphi_{2}$ mean that φ_{1} and φ_{2} have the same truth table (are logically equivalent)
- In Number Theory, $a \equiv b(\bmod m)$, read "a is congruent to
b mod $\left.m^{\prime \prime}\right)$ means $m \mid(a-b)$!
- THESE TWO ARE VERY DIFFERENT!!!! THEY HAVE NOTHING TO DO WITH EACH OTHER!

Properties of congruence

1. If $a_{1} \equiv b_{1}(\bmod m)$ and $a_{2} \equiv b_{2}(\bmod m)$, then:

$$
\left(a_{1}+a_{2}\right) \equiv\left(b_{1}+b_{2}\right)(\bmod m)
$$

Properties of congruence

1. If $a_{1} \equiv b_{1}(\bmod m)$ and $a_{2} \equiv b_{2}(\bmod m)$, then:

$$
\left(a_{1}+a_{2}\right) \equiv\left(b_{1}+b_{2}\right)(\bmod m)
$$

Proof:

- $a_{1} \equiv b_{1}(\bmod m) \Rightarrow m \mid\left(a_{1}-b_{1}\right)$
- $\left(\exists r_{1} \in \mathbb{Z}\right)\left[a_{1}-b_{1}=m \cdot r_{1}\right]$ (I)
- Similarly, $\left(\exists r_{2} \in \mathbb{Z}\right)\left[a_{2}-b_{2}=m \cdot r_{2}\right]$ (II)
- Therefore, by (I) and (II) we have:

$$
\begin{gathered}
a_{1}-b_{1}+a_{2}-b_{2}=m \cdot r_{1}+m \cdot r_{2} \Rightarrow\left(a_{1}+a_{2}\right)-\left(b_{1}+b_{2}\right)=m \cdot\left(r_{1}+r_{2}\right) \Rightarrow \\
a_{1}+a_{2} \equiv\left(b_{1}+b_{2}\right)(\bmod m)
\end{gathered}
$$

Properties of congruence

2. If $a_{1} \equiv b_{1}(\bmod m)$ and $a_{2} \equiv b_{2}(\bmod m)$, then

$$
a_{1} \cdot a_{2} \equiv b_{1} \cdot b_{2}(\bmod m)
$$

Properties of congruence

Proof: Let $a_{1} \equiv b_{1}(\bmod m)$ and $a_{2} \equiv b_{2}(\bmod m)$. By definition, $j m=a_{1}-b_{1}$ and $k m=a_{2}-b_{2}$ with $j, k \in \mathbb{Z}$. So, $j m+b_{1}=a_{1}$ and $k m+b_{2}=a_{2}$. Then,

$$
\begin{aligned}
& a_{1} \cdot a_{2}=\left(j m+b_{1}\right)\left(k m+b_{2}\right) \\
= & j k m^{2}+k m b_{1}+j m b_{2}+b_{1} \cdot b_{2} \\
= & m\left(j k m+k b_{1}+j b_{2}\right)+b_{1} \cdot b_{2}
\end{aligned}
$$

So, $\left(a_{1} \cdot a_{2}\right)-\left(b_{1} \cdot b_{2}\right)=m\left(j k m+k b_{1}+j b_{2}\right)$. Since $j k m+k b_{1}+j b_{2} \in \mathbb{Z}, a_{1} \cdot a_{2} \equiv b_{1} \cdot b_{2}(\bmod m)$

Proof with modular arithmetic

- Claim: Any two integers of opposite parity sum to an odd number.
- Proof:
- Since a_{1}, a_{2} are opposite parity. Assume that

$$
a_{1} \equiv 0(\bmod 2) \text { and } a_{2} \equiv 1(\bmod 2)
$$

- Using the properties of modular arithmetic, we obtain:

$$
a_{1}+a_{2} \equiv(0+1)(\bmod 2) \equiv 1(\bmod 2)
$$

- Done.

More proofs

- Similarly, you can show that $(\forall a \in \mathbb{N})\left[a^{2}+a \equiv 0(\bmod 2)\right]$

More proofs

- Similarly, you can show that $(\forall a \in \mathbb{N})\left[a^{2}+a \equiv 0(\bmod 2)\right]$
- Proof: We will simplify notation by assuming that " \equiv " is the same as
" $\equiv(\bmod 2)$ " We have two cases:

1. $a \equiv 0$. Then, $a^{2}+a \equiv 0^{2}+0 \equiv 0$. Done.
2. $a \equiv 1$. Then, $a^{2}+a \equiv 1^{2}+1 \equiv 0$. Done.

More Proofs Using Mod

- $(\forall n \in \mathbb{Z})\left[\left(n^{2} \equiv 0(\bmod 2)\right) \Rightarrow(n \equiv 0(\bmod 2))\right]$

More Proofs Using Mod

- $(\forall n \in \mathbb{Z})\left[\left(n^{2} \equiv 0(\bmod 2)\right) \Rightarrow(n \equiv 0(\bmod 2))\right]$
- Proving this directly is somewhat hard
- On the other hand, the contrapositive:

$$
(\forall n \in \mathbb{Z})\left[(n \not \equiv 0(\bmod 2)) \Rightarrow\left(n^{2} \not \equiv 0(\bmod 2)\right)\right]
$$

is much easier!

More Proofs Using Mod

- $(\forall n \in \mathbb{Z})\left[\left(n^{2} \equiv 0(\bmod 2)\right) \Rightarrow(n \equiv 0(\bmod 2))\right]$
- Proving this directly is somewhat hard
- On the other hand, the contrapositive:

$$
(\forall n \in \mathbb{Z})\left[(n \not \equiv 0(\bmod 2)) \Rightarrow\left(n^{2} \not \equiv 0(\bmod 2)\right)\right]
$$

is much easier!

- Proof (with mods): Since $n \not \equiv 0(\bmod 2)$, we have that $n \equiv 1(\bmod 2)$. So, by properties of congruence, we have that $n^{2} \equiv 1^{2} \equiv 1(\bmod 2)$. Done.

More Proofs Using Mod

- $(\forall n \in \mathbb{Z})\left[\left(n^{2} \equiv 0(\bmod 2)\right) \Rightarrow(n \equiv 0(\bmod 2))\right]$
- Proving this directly is somewhat hard
- On the other hand, the contrapositive:

$$
(\forall n \in \mathbb{Z})\left[(n \not \equiv 0(\bmod 2)) \Rightarrow\left(n^{2} \not \equiv 0(\bmod 2)\right)\right]
$$

is much easier!

- Proof (with mods): Since $n \not \equiv 0(\bmod 2)$, we have that $n \equiv 1(\bmod 2)$. So, by properties of congruence, we have that $n^{2} \equiv 1^{2} \equiv 1(\bmod 2)$. Done.

Algorithms on divisibility

1. Modular Exponentiation (Repeated Squaring)
2. Greatest Common Divisor (GCD)

Basic assumptions

- $a+b$ and $a \cdot b$ have unit cost
- This is not true if a, b are too large

First problem

How fast can we compute $a^{n} \bmod m(n, m \in \mathbb{N})$?

First problem

How fast can we compute $a^{n} \bmod m(n, m \in \mathbb{N})$?

1. Obviously, we can compute $a^{n}=\underbrace{a \times a \times \cdots \times a}$ and mod that large number by m.

First problem

How fast can we compute $a^{n} \bmod m(n, m \in \mathbb{N})$?

1. Obviously, we can compute $a^{n}=\underbrace{a \times a \times \cdots \times a}$ and mod that large number by m. n times

- Problems:
- Arithmetic overflow in computation of a^{n}
- Modding a large quantity is tough on the FPU

First problem, second approach

2. We could start computing $a \times a \times \cdots \times a$ until the product becomes larger than m, reduce and repeat until we're done.

First problem, second approach

2. We could start computing $a \times a \times \cdots \times a$ until the product becomes larger than m, reduce and repeat until we're done.

- Problems:
- Arithmetic overflow in computation of a^{n}
- Mordding a large quantity is tough on the EPU

First problem, second approach

2. We could start computing $a \times a \times \cdots \times a$ until the product becomes larger than m, reduce and repeat until we're done.

- Problems:
- Arithmetic overffowin computation of a^{n}
- Modding a large quantity is tough onthe EPU
- Additionally, we have another nice property...

First problem

- How fast can we compute $a^{n} \bmod m(n, m \in \mathbb{N})$?
We always need n
steps

> We can do it in roughly
> $\log n$ steps

First problem

- How fast can we compute $a^{n} \bmod m(n, m \in \mathbb{N})$?

```
We always need n
    steps
``` roughly \(\sqrt{n}\) steps


\section*{Example}
- Computing \(3^{64} \bmod 99\) in \(\log _{2} 64=6\) steps.

\section*{Example}
- Computing \(3^{64} \bmod 99\) in \(\log _{2} 64=6\) steps.
- All \(\equiv\) are \(\equiv(\bmod 99)\).

\section*{Example}
- Computing \(3^{64} \bmod 99\) in \(\log _{2} 64=6\) steps.
- All \(\equiv\) are \(\equiv(\bmod 99)\).
1. \(3^{2^{1}} \equiv 9\)

\section*{Example}
- Computing \(3^{64} \bmod 99\) in \(\log _{2} 64=6\) steps.
- All \(\equiv\) are \(\equiv(\bmod 99)\).
1. \(3^{2^{1}} \equiv 9\)
2. \(3^{2^{2}} \equiv\left(3^{2}\right)^{2} \equiv 9^{2} \equiv 81\)

\section*{Example}
- Computing \(3^{64} \bmod 99\) in \(\log _{2} 64=6\) steps.
- All \(\equiv\) are \(\equiv(\bmod 99)\).
1. \(3^{2^{1}} \equiv 9\)
2. \(3^{2^{2}} \equiv\left(3^{2}\right)^{2} \equiv 9^{2} \equiv 81\)
3. \(3^{2^{3}} \equiv\left(3^{2^{2}}\right)^{2} \equiv 81^{2} \equiv 27\)

\section*{Example}
- Computing \(3^{64} \bmod 99\) in \(\log _{2} 64=6\) steps.
- All \(\equiv\) are \(\equiv(\bmod 99)\).
\[
\begin{aligned}
& \text { 1. } 3^{2^{1}} \equiv 9 \\
& \text { 2. } 3^{2^{2}} \equiv\left(3^{2}\right)^{2} \equiv 9^{2} \equiv 81 \\
& \text { 3. } 3^{2^{3}} \equiv\left(3^{2^{2}}\right)^{2} \equiv 81^{2} \equiv 27 \\
& \text { 4. } \\
& 3^{2^{4}} \equiv\left(3^{2^{3}}\right)^{2} \equiv 27^{2} \equiv 36
\end{aligned}
\]

\section*{Example}
- Computing \(3^{64} \bmod 99\) in \(\log _{2} 64=6\) steps.
- All \(\equiv\) are \(\equiv(\bmod 99)\).
\[
\begin{array}{ll}
\text { 1. } & 3^{2^{1}} \equiv 9 \\
\text { 2. } & 3^{2^{2}} \equiv\left(3^{2}\right)^{2} \equiv 9^{2} \equiv 81 \\
\text { 3. } & 3^{2^{3}} \equiv\left(3^{2^{2}}\right)^{2} \equiv 81^{2} \equiv 27 \\
\text { 4. } & 3^{2^{4}} \equiv\left(3^{2^{3}}\right)^{2} \equiv 27^{2} \equiv 36 \\
\text { 5. } & 3^{2^{5}} \equiv\left(3^{2^{4}}\right)^{2} \equiv 36^{2} \equiv 9
\end{array}
\]

\section*{Example}
- Computing \(3^{64} \bmod 99\) in \(\log _{2} 64=6\) steps.
- All \(\equiv\) are \(\equiv(\bmod 99)\).
\[
\begin{array}{ll}
\text { 1. } & 3^{2^{1}} \equiv 9 \\
\text { 2. } & 3^{2^{2}} \equiv\left(3^{2}\right)^{2} \equiv 9^{2} \equiv 81 \\
\text { 3. } & 3^{2^{3}} \equiv\left(3^{2^{2}}\right)^{2} \equiv 81^{2} \equiv 27 \\
\text { 4. } & 3^{2^{4}} \equiv\left(3^{2^{3}}\right)^{2} \equiv 27^{2} \equiv 36 \\
\text { 5. } & 3^{2^{5}} \equiv\left(3^{2^{4}}\right)^{2} \equiv 36^{2} \equiv 9 \\
\text { 6. } & 3^{2^{6}} \equiv(9)^{2} \equiv 81
\end{array}
\]

\section*{Example}
- Computing \(3^{64} \bmod 99\) in \(\log _{2} 64=6\) steps.
- All \(\equiv\) are \(\equiv(\bmod 99)\).
\[
\begin{array}{ll}
\text { 1. } & 3^{2^{1}} \equiv 9 \\
\text { 2. } & 3^{2^{2}} \equiv\left(3^{2}\right)^{2} \equiv 9^{2} \equiv 81 \\
\text { 3. } & 3^{2^{3}} \equiv\left(3^{2^{2}}\right)^{2} \equiv 81^{2} \equiv 27 \\
\text { 4. } & 3^{2^{4}} \equiv\left(3^{2^{3}}\right)^{2} \equiv 27^{2} \equiv 36 \\
\text { 5. } & 3^{2^{5}} \equiv\left(3^{2^{4}}\right)^{2} \equiv 36^{2} \equiv 9 \\
\text { 6. } & 3^{2^{6}} \equiv(9)^{2} \equiv 81
\end{array}
\]
- Aha! \(3^{64}=3^{2^{6}} \equiv 81\)

\section*{Good news, bad news}
- Good news: By using repeated squaring, can compute \(a^{2^{\ell}} \bmod m\) quickly (roughly \(\ell=\log _{2} 2^{\ell}\) steps)
- Bad news: What if our exponent is not a power of 2?

\section*{Example}
- Computing \(3^{27} \bmod 99\) with the same method
- All \(\equiv\) are \(\equiv(\bmod 99)\).
- \(3^{1} \equiv 3\)
- \(3^{2} \equiv 9\)
- \(3^{2^{2}} \equiv\left(3^{2}\right)^{2} \equiv 9^{2} \equiv 81\)
- \(3^{2^{3}} \equiv\left(3^{2^{2}}\right)^{2} \equiv 81^{2} \equiv 27\)
- \(3^{2^{4}} \equiv\left(3^{2^{3}}\right)^{2} \equiv 27^{2} \equiv 36\)
- \(3^{27}=3^{16} \times 3^{8} \times 3^{2} \times 3^{1} \equiv 36 \times 27 \times 9 \times 3\)

\section*{Example (contd.)}
- To avoid large numbers, reduce product as you go:
- \(3^{27}=3^{16} \times 3^{8} \times 3^{2} \times 3^{1} \equiv 36 \times 27 \times 9 \times 3 \equiv\)
\[
(36 \times 27) \times(9 \times 3) \equiv 81 \times 27 \equiv 9
\]

\section*{Exercise}
- Solve the following for \(r\) please!
\[
5^{34} \equiv r(\bmod 117)
\]

\section*{Algorithm to compute \(a^{n}(\bmod m)\) in \(\log n\) steps}
- Step 1: Write \(n=2^{q_{1}}+2^{q_{2}}+\cdots+2^{q_{r}}, q_{1}<q_{2}<\cdots<q_{r}\)

- Step 3: Use repeated squaring to compute:
\[
\begin{aligned}
& a^{2^{0}}, a^{2^{1}}, a^{2^{2}}, \ldots, a^{2^{q_{r}}} \bmod m \\
& \text { using } a^{2^{i+1}} \equiv\left(a^{2^{i}}\right)^{2}(\bmod m)
\end{aligned}
\]
- Step 4: Compute \(a^{2^{q_{1}}} \times \cdots \times a^{2^{q_{r}}}\) mod \(m\) reducing when necessary to avoid large numbers

\section*{The key step}
- The key step is Step \#3: Use repeated squaring to compute:
\[
a^{2^{0}}, a^{2^{1}}, a^{2^{2}}, \ldots, a^{2^{q_{r}}} \bmod m
\]
\[
\text { using } a^{2^{i+1}} \equiv\left(a^{2^{i}}\right)^{2}(\bmod m)
\]
- When computing \(a^{2^{i+1}} \bmod m\), already have computed \(\left(a^{2^{i}}\right)^{2}(\bmod m)\)
- Note that all numbers are below \(m\) because we reduce mod \(m\) every step of the way
- So \(\left(a^{2^{i}}\right)^{2}\) is unit cost and anything mod \(\mathbf{m}\) is also unit cost!

\section*{Second problem: Greatest Common Divisor (GCD)}
- If \(a, b \in \mathbb{N}^{\neq 0}\), then the GCD of \(a, b\) is the largest non-zero integer \(n\) such that \(n \mid a\) and \(n \mid b\)

\section*{Second problem: Greatest Common Divisor (GCD)}
- If \(a, b \in \mathbb{N}^{\neq 0}\), then the GCD of \(a, b\) is the largest non-zero integer \(n\) such that \(n \mid a\) and \(n \mid b\)
- What is the GCD of...
- 10 and 15 ?

\section*{Second problem: Greatest Common Divisor (GCD)}
- If \(a, b \in \mathbb{N}^{\neq 0}\), then the GCD of \(a, b\) is the largest non-zero integer \(n\) such that \(n \mid a\) and \(n \mid b\)
- What is the GCD of...
- 10 and 15 ? 5
- 12 and 90 ?

\section*{Second problem: Greatest Common Divisor (GCD)}
- If \(a, b \in \mathbb{N}^{\neq 0}\), then the GCD of \(a, b\) is the largest non-zero integer \(n\) such that \(n \mid a\) and \(n \mid b\)
- What is the GCD of...
- 10 and 15 ? 5
- 12 and 90 ? 6
- 20 and 29 ?

\section*{Second problem: Greatest Common Divisor (GCD)}
- If \(a, b \in \mathbb{N}^{\neq 0}\), then the GCD of \(a, b\) is the largest non-zero integer \(n\) such that \(n \mid a\) and \(n \mid b\)
- What is the GCD of...
- 10 and 15 ? 5
- 12 and 90? 6
- 20 and 29? 1 (20 and 29 are called co-prime or relatively prime)
- 153 and 181

\section*{Second problem: Greatest Common Divisor (GCD)}
- If \(a, b \in \mathbb{N}^{\neq 0}\), then the GCD of \(a, b\) is the largest non-zero integer \(n\) such that \(n \mid a\) and \(n \mid b\)
- What is the GCD of...
- 10 and 15 ? 5
- 12 and 90? 6
- 20 and 29? 1 (20 and 29 are called co-prime or relatively prime)
- 153 and 1811 (also co-prime)

\section*{Euclid's GCD algorithm}
- Recall: If \(a \equiv 0(\bmod m)\) and \(b \equiv 0(\bmod m)\), then \(a-b \equiv 0(\bmod m)\)
- The GCD algorithm finds the greatest common divisor by executing this recursion (assume a > b):
\[
G C D(a, b)=G C D(a, b-a)
\]

Until its arguments are the same.

\section*{Greatest Common Divisor (GCD)}
- Recall: If \(a \equiv 0(\bmod m)\) and \(b \equiv 0(\bmod m)\), then \(a-b \equiv 0(\bmod m)\)
- The GCD algorithm finds the greatest common divisor by executing this recursion (assume \(a>b\)):
\[
G C D(a, b)=G C D(a, b-a)
\]

Until its arguments are the same.
- Question: If we implement this in a programming language, it can only be done recursively

\section*{Greatest Common Divisor (GCD)}
- Recall: If \(a \equiv 0(\bmod m)\) and \(b \equiv 0(\bmod m)\), then \(a-b \equiv 0(\bmod m)\)
- The GCD algorithm finds the greatest common divisor by executing this recursion (assume \(a>b\)):
\[
G C D(a, b)=G C D(a, b-a) \quad \text { Tail }
\]

Until its arguments are the same.
- Question: If we implement this in a programming language, it can only be done recursively

Something Else
```

left = a;
right = b;
while(left != right){
if(left > right)
left = left - right;
else
right = right - left;
}
print "GCD is: " left; // or right

```

\section*{GCD example}
- \(\operatorname{GCD}(18,100)=\)
\(\operatorname{GCD}(18,100-18)=\operatorname{GCD}(18,82)=\) \(\operatorname{GCD}(18,82-18=\operatorname{GCD}(18,64)=\) \(\operatorname{GCD}(18,64-18)=\operatorname{GCD}(18,46)=\) \(\operatorname{GCD}(18,46-18)=\operatorname{GCD}(18,28)=\) \(\operatorname{GCD}(18,28-18)=\operatorname{GCD}(18,10)=\) \(\operatorname{GCD}(18-10,10)=\operatorname{GCD}(8,10)=\) GCD (8, 10-8)= GCD (8, 2) = \(\operatorname{GCD}(8-2,2)=\operatorname{GCD}(6,2)=\) \(\operatorname{GCD}(6-2,2)=\operatorname{GCD}(4,2)=\)
\(\operatorname{GCD}(4-2,2)=\operatorname{GCD}(2,2)=2\)

\section*{GCD example}
- \(\operatorname{GCD}(18,100)=\)
\(\operatorname{GCD}(18,100-18)=\operatorname{GCD}(18,82)=\) \(\operatorname{GCD}(18,82-18=\operatorname{GCD}(18,64)=\) \(\operatorname{GCD}(18,64-18)=\operatorname{GCD}(18,46)=\) \(\operatorname{GCD}(18,46-18)=\operatorname{GCD}(18,28)=\) \(\operatorname{GCD}(18,28-18)=\operatorname{GCD}(18,10)=\) \(\operatorname{GCD}(18-10,10)=\operatorname{GCD}(8,10)=\) GCD (8, 10-8)= GCD(8, 2) = \(\operatorname{GCD}(8-2,2)=\operatorname{GCD}(6,2)=\) \(\operatorname{GCD}(6-2,2)=\operatorname{GCD}(4,2)=\) \(\operatorname{GCD}(4-2,2)=\operatorname{GCD}(2,2)=2\)

Given integers \(a, b\) with \(a>b\) (without loss of generality), approximately how many steps does this algorithm take?

\section*{GCD example}
- \(\operatorname{GCD}(18,100)=\)
\(\operatorname{GCD}(18,100-18)=\operatorname{GCD}(18,82)=\) \(\operatorname{GCD}(18,82-18=\operatorname{GCD}(18,64)=\) \(\operatorname{GCD}(18,64-18)=\operatorname{GCD}(18,46)=\) \(\operatorname{GCD}(18,46-18)=\operatorname{GCD}(18,28)=\) \(\operatorname{GCD}(18,28-18)=\operatorname{GCD}(18,10)=\) \(\operatorname{GCD}(18-10,10)=\operatorname{GCD}(8,10)=\) GCD (8, 10-8)= GCD(8, 2) = \(\operatorname{GCD}(8-2,2)=\operatorname{GCD}(6,2)=\) \(\operatorname{GCD}(6-2,2)=\operatorname{GCD}(4,2)=\) \(\operatorname{GCD}(4-2,2)=\operatorname{GCD}(2,2)=2\)

\section*{Can we do better?}
- \(\operatorname{GCD}(18,100)=\)

\(\operatorname{GCD}(18,100-18)=\operatorname{GCD}(18,82)=\)
\(\operatorname{GCD}(18,82-18=\operatorname{GCD}(18,64)=\)
\(\operatorname{GCD}(18,64-18)=\operatorname{GCD}(18,46)=\)
\(\operatorname{GCD}(18,46-18)=\operatorname{GCD}(18,28)=\)
\(\operatorname{GCD}(18,28-18)=\operatorname{GCD}(18,10)=\)
GCD \((18-10,10)=\operatorname{GCD}(8,10)=\)
\(\operatorname{GCD}(8,10-8)=\operatorname{GCD}(8,2)=\)
\(\operatorname{GCD}(8-2,2)=\operatorname{GCD}(6,2)=\)
\(\operatorname{GCD}(6-2,2)=\operatorname{GCD}(4,2)=\)
\(\operatorname{GCD}(4-2,2)=\operatorname{GCD}(2,2)=2\)

\section*{Can we do better?}
- \(\operatorname{GCD}(18,100)=\)
\[
\operatorname{GCD}(18,100-18)=\operatorname{GCD}(18,82)=
\]
\[
\operatorname{GCD}(18,82-18)=\operatorname{GCD}(18,64)=
\]
\[
\operatorname{GCD}(18,64-18)=\operatorname{GCD}(18,46)=
\]
\[
\operatorname{GCD}(18,46-18)=\operatorname{GCD}(18,28)=
\]
\[
\operatorname{GCD}(18,28-18)=\operatorname{GCD}(18,10)=
\]
\[
\operatorname{GCD}(18-10,10)=\operatorname{GCD}(8,10)=
\]
\[
\operatorname{GCD}(8-2,2)=\operatorname{GCD}(6,2)=
\]

\[
\operatorname{GCD}(8,10-8)=\operatorname{GCD}(8,2)=
\]
\(\operatorname{GCD}(18,100)=\)
\(\operatorname{GCD}(18,100-5 \times 18)=\operatorname{GCD}(18\), 10) \(=\)
\(\operatorname{GCD}(18-10,10)=\operatorname{GCD}(8,10)=\) \(\operatorname{GCD}(8,10-8)=\operatorname{GCD}(8,2)=\) \(\operatorname{GCD}(8-3 \times 2,2)=\operatorname{GCD}(2,2)=2\)

From 10 to 4 steps!

\section*{How fast is this new algorithm?}
- Given non-zero integers \(a, b\) with \(a>b\), roughly how many steps does this new algorithm take to compute GCD \((\mathrm{a}, \mathrm{b})\) ?

\section*{How fast is this new algorithm?}
- Given non-zero integers \(a, b\) with \(a>b\), roughly how many steps does this new algorithm take to compute GCD \((a, b)\) ?

- In fact, it takes \(\log _{\phi} a\), where \(\phi=\frac{1+\sqrt{5}}{2}\) is the golden ratio.
- Proof by Gabriel Lamé in 1844, considered by some to be the first ever result in Algorithmic Complexity theory.

\section*{STOP}```

