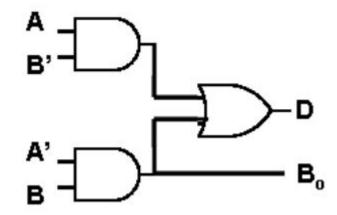
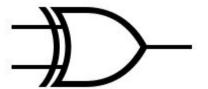

Circuits

250H


Half Adders

X	Y	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

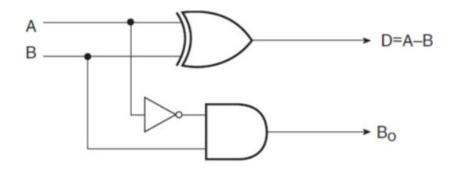

Half Subtractors

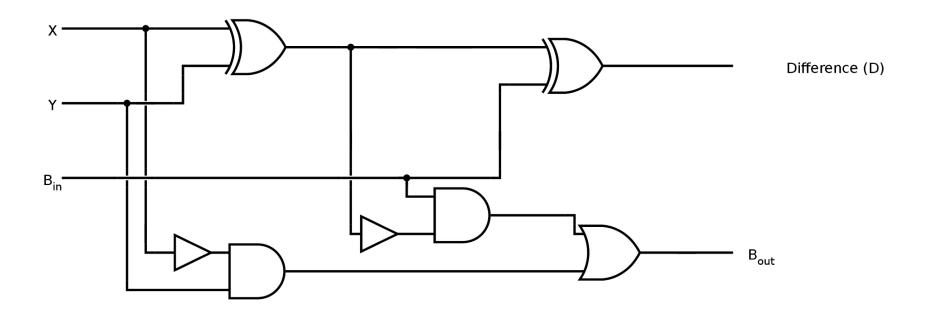
X	Y	D	В
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Exclusive OR

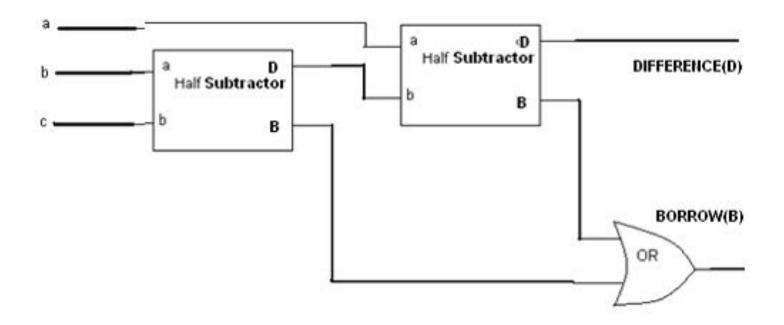
X	Y	
0	0	0
0	1	1
1	0	1
1	1	0

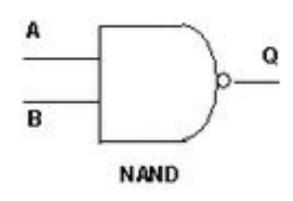
Exclusive OR

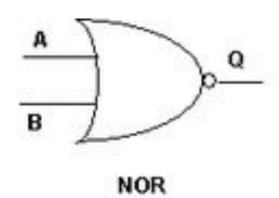

X	Y	
0	0	0
0	1	1
1	0	1
1	1	0


Wait didn't we just see that column

Half Subtractors

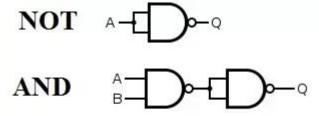

X	Y	D	В
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

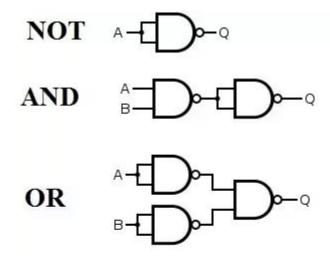

Full Subtractors

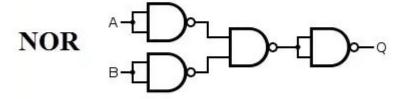

Full Subtractors

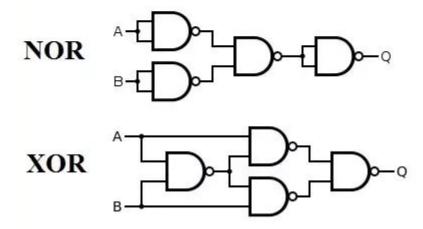
Nand and Nor

А	В	Q
0	0	1
0	1	1
1	0	1
1	1	0


	Д	В	Q	
	0	0	1	
	0	1	0	
	1	0	0	
	1	1	0	
	0 0 1	0 1 0	1 0 0	


Nand and Nor


Any circuit can be created with only Nand and Nor gates


Nand and Nor

- Any circuit can be created with only NAND and NOR gates
- In Breakout Rooms, Try and create NOT, AND, and OR using only NAND gates
 - This one was my fault
 - MAKE FRIENDS AND TALK TO EACH OTHER!!!!
 - STOP BEING ME

Boolean Algebra Identities

□ TABLE 3 **Basic Identities of Boolean Algebra**

1.
$$X+0=X$$

3.
$$X+1=1$$

$$5. \quad X + X = X$$

7.
$$X + \overline{X} = 1$$

9.
$$\overline{\overline{X}} = X$$

$$X+0=X$$

$$4. \quad X \cdot 0 = 0$$

 $X \cdot 1 = X$

6.
$$X \cdot X = X$$

8.
$$X \cdot \overline{X} = 0$$

13.

$$10. \quad X+Y=Y+X$$

12.
$$X + (Y + Z) = (X + Y) + Z$$

14.
$$X(Y+Z) = XY+XZ$$

16.
$$\overline{X} + \overline{Y} = \overline{X} \cdot \overline{Y}$$

11.
$$XY = YX$$

$$X(YZ) = (XY)Z$$

15.
$$X + YZ = (X + Y)(X + Z)$$

17.
$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

1.
$$X + 0 = X$$

3.
$$X+1=1$$

$$5. \quad X + X = X$$

7.
$$X + \overline{X} = 1$$

9.
$$\overline{\overline{X}} = X$$

$$2. X \cdot 1 = X$$

4.
$$X \cdot 0 = 0$$

6.
$$X \cdot X = X$$

8.
$$X \cdot \overline{X} = 0$$

$$10. \quad X + Y = Y + X$$

12.
$$X + (Y + Z) = (X + Y) + Z$$

$$14. \quad X(Y+Z) = XY + XZ$$

16.
$$\overline{X} + \overline{Y} = \overline{X} \cdot \overline{Y}$$

11.
$$XY = YX$$

13.
$$X(YZ) = (XY)Z$$

15.
$$X + YZ = (X + Y)(X + Z)$$

17.
$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

$$\bar{X}\bar{Y} + \bar{X}Y + XY = \bar{X} + Y$$

$$ar{X}ar{Y} + ar{X}Y + XY = ar{X} + Y$$
 $ar{X}ar{Y} + ar{X}Y + ar{X}Y + XY = ar{X} + Y$

$$ar{X}ar{Y} + ar{X}Y + XY = ar{X} + Y$$
 $ar{X}ar{Y} + ar{X}Y + ar{X}Y + XY = ar{X} + Y$
 $ar{X}(ar{Y} + Y) + Y(ar{X} + X) = ar{X} + Y$

$$ar{X}ar{Y} + ar{X}Y + XY = ar{X} + Y$$
 $ar{X}ar{Y} + ar{X}Y + ar{X}Y + XY = ar{X} + Y$
 $ar{X}(ar{Y} + Y) + Y(ar{X} + X) = ar{X} + Y$
 $ar{X}(1) + Y(1) = ar{X} + Y$

$$ar{X}ar{Y} + ar{X}Y + XY = ar{X} + Y$$
 $ar{X}ar{Y} + ar{X}Y + ar{X}Y + XY = ar{X} + Y$
 $ar{X}ig(ar{Y} + Yig) + Yig(ar{X} + Xig) = ar{X} + Y$
 $ar{X}(1) + Y(1) = ar{X} + Y$
 $ar{X} + Y = ar{X} + Y$

Let's Check with Truth Tables

X	X	Y	Y	$\overline{XY} + \overline{XY} + XY$	X + Y
0	1	0	1	1	1
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	0	1	1

$$\bar{X}\bar{Y} + \bar{X}Y + XY = \bar{X} + Y$$

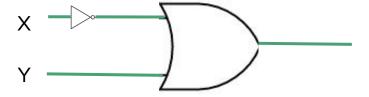
$$\bar{X}\bar{Y} + \bar{X}Y + XY = \bar{X} + Y$$

How many gates on the left?

$$\bar{X}\bar{Y} + \bar{X}Y + XY = \bar{X} + Y$$

- How many gates on the left?
 - 0 8

$$\bar{X}\bar{Y} + \bar{X}Y + XY = \bar{X} + Y$$


- How many gates on the left?
 - 0 8
- How many gates on the right?

$$\bar{X}\bar{Y} + \bar{X}Y + XY = \bar{X} + Y$$

- How many gates on the left?
 - 0 8
- How many gates on the right?
 - 0 2

$$\bar{X}\bar{Y} + \bar{X}Y + XY = \bar{X} + Y$$

- How many gates on the left?8
- How many gates on the right?
- 2 is much better than 8

