START

RECORDING

Order-Preserving Bijections

CMSC 250

$\mathbb{N}, \mathbb{Z}:$ the Same, or Different?

1. There is a bijection from \mathbb{N} to \mathbb{Z} : so same size. (AS SETS)
2. But they seem different (as ordered sets)
3. How to pin down the difference?

Order-Preserving Bijections

- Definition: Let A and B be ordered sets. ($A, B \subseteq \mathbb{R}$), ordering the usual (\leq). An order-preserving bijection (henceforth: OPB) $f: A \mapsto B$ is a bijection such that

$$
(x<y) \Leftrightarrow f(x)<f(y)
$$

- If A and B are two ordered sets and there exists an OPB from A to B, then we say that they are of the same ordinality
- Clearly, same ordinality implies same cardinality.

Order-Preserving Bijections

- Definition: Let A and B be ordered sets. ($A, B \subseteq \mathbb{R}$), ordering the usual (\leq). An order-preserving bijection (henceforth: OPB) $f: A \mapsto B$ is a bijection such that

Note: This is an iff

$$
(x<y) \Leftrightarrow f(x)<f(y)
$$

- If A and B are two ordered sets and there exists an OPB from A to B, then we say that they are of the same ordinality
- Clearly, same ordinality implies same cardinality.

Examples

- There is an OPB between \mathbb{N} and $\mathbb{N}^{\text {even }}: f(x)=2 \cdot x$.

Examples

- There is an OPB between \mathbb{N} and $\mathbb{N}^{\text {even }}: f(x)=2 \cdot x$.

$$
\begin{aligned}
& 0,1,2,3, \ldots \\
& 0,1,2,4,6, \ldots
\end{aligned}
$$

Examples

- There is an OPB between \mathbb{N} and $\mathbb{N}^{\text {even }}: f(x)=2 \cdot x$.

$$
\begin{aligned}
& 0,1,2,3, \ldots \\
& 0,1, ~ ह ै, ~ \\
& 0,6, \ldots
\end{aligned}
$$

- Other sets with OPBs: $\mathbb{N}, \mathbb{N}^{\text {odd }}, \mathbb{N} \equiv(0 \bmod 3), \mathbb{N}^{i(\bmod j)}, \mathbb{N}^{\geq 17}, \ldots$

\mathbb{N}, \mathbb{Z} : Different!

- There is no OPB from \mathbb{N} to \mathbb{Z}.

$\mathbb{N}, \mathbb{Z}:$ Different!

- There is no OPB from \mathbb{N} to \mathbb{Z}.
- Proof (by contradiction): Assume there exists an $\operatorname{OPB} f: \mathbb{N} \mapsto \mathbb{Z}$. Let $f(0)=y$.

$\mathbb{N}, \mathbb{Z}:$ Different!

- There is no OPB from \mathbb{N} to \mathbb{Z}.
- Proof (by contradiction): Assume there exists an $\operatorname{OPB} f: \mathbb{N} \mapsto \mathbb{Z}$. Let $f(0)=y$.
- Now, finish yourselves!

$\mathbb{N}, \mathbb{Z}:$ Different!

- There is no OPB from \mathbb{N} to \mathbb{Z}.
- Proof (by contradiction): Assume there exists an $\operatorname{OPB} f: \mathbb{N} \mapsto \mathbb{Z}$. Let $f(0)=y$.
- Now, finish yourselves!
- Let $x \in \mathbb{N}$ map to $y-1$.

$\mathbb{N}, \mathbb{Z}:$ Different!

- There is no OPB from \mathbb{N} to \mathbb{Z}.
- Proof (by contradiction): Assume there exists an $\operatorname{OPB} f: \mathbb{N} \mapsto \mathbb{Z}$. Let $f(0)=y$.
- Now, finish yourselve!
- Let $x \in \mathbb{N}$ map to $y-1$.
- $f(x)<f(0)$ since f is an OPB.

$\mathbb{N}, \mathbb{Z}:$ Different!

- There is no OPB from \mathbb{N} to \mathbb{Z}.
- Proof (by contradiction): Assume there exists an $\operatorname{OPB} f: \mathbb{N} \mapsto \mathbb{Z}$. Let $f(0)=y$.
- Now, finish yourselves!
- Let $x \in \mathbb{N}$ map to $y-1$.
- $f(x)<f(0)$ since f is an OPB.
- From the defn of OPBs, this means that $x<0$.

$\mathbb{N}, \mathbb{Z}:$ Different!

- There is no OPB from \mathbb{N} to \mathbb{Z}.
- Proof (by contradiction): Assume there exists an $\operatorname{OPB} f: \mathbb{N} \mapsto \mathbb{Z}$. Let $f(0)=y$.
- Now, finish yourselves!
- Let $x \in \mathbb{N}$ map to $y-1$.
- $f(x)<f(0)$ since f is an OPB.
- From the defn of OPBs, this means that $x<0$.
- Contradiction, since 0 is the least natural.

$\mathbb{N}, \mathbb{Z}:$ Different!

- There is no OPB from \mathbb{N} to \mathbb{Z}.
- Proof (by contradiction): Assume there exists an $\operatorname{OPB} f: \mathbb{N} \mapsto \mathbb{Z}$. Let $f(0)=y$.
- Now, finish yourselves!
- Let $x \in \mathbb{N}$ map to $y-1$.
- $f(x)<f(0)$ since f is an OPB.
- From the defn of OPBs, this means that $x<0$.
- Contradiction, since 0 is the least natural.
- Therefore, there is no OPB from \mathbb{N} to \mathbb{Z}.

Is $\mathbb{N} \prec \mathbb{Z}$?

- Of course!
- But how can we say this rigorously? (A, B ordered sets)
- Defn: $A \preccurlyeq B$ if there is an OPI (Order-Preserving Injection) from A into B.
- Defn: $A \prec B$ if there is an OPI from A into B but there is no OPS (Order-Preserving Surjection) from A into B !
- Advice: Stick with injection and surjection here instead of OPONETOONE or OPONTO.

Is $\mathbb{N} \prec \mathbb{Z} ?$

- Of course!
- But how can we say this rigorously? (A, B ordered sets)
- Defn: $A \preccurlyeq B$ if there is an OPI (Order-Preserving Injection) from A into B.
- Defn: $A \prec B$ if there is an OPI from A into B but there is no OPS (Order-Preserving Surjection) from A into B !
- Advice: Stick with injection and surjection here instead of OPONETOONE or OPONTO.
- Note: $A \leqslant B$ is read " A is less than or equal to B " with the understanding that it applies to A, B ordered sets.

We Prove $\mathbb{N} \prec \mathbb{Z}$

1. Theorem: There exists an OPI from \mathbb{N} to \mathbb{Z}.

We Prove $\mathbb{N} \prec \mathbb{Z}$

1. Theorem: There exists an OPI from \mathbb{N} to \mathbb{Z}.

- Can you guess what it is?

We Prove $\mathbb{N} \prec \mathbb{Z}$

1. Theorem: There exists an OPI from \mathbb{N} to \mathbb{Z}.

- Can you guess what it is?
- Identity mapping $f(n)=n$.

We Prove $\mathbb{N} \prec \mathbb{Z}$

1. Theorem: There exists an OPI from \mathbb{N} to \mathbb{Z}.

- Can you guess what it is?
- Identity mapping $f(n)=n$.

2. Theorem: There is no OPS from \mathbb{N} to \mathbb{Z}.

- Follows from proof that there is no OPB from \mathbb{N} to \mathbb{Z}.

We Prove $\mathbb{N} \prec \mathbb{Z}$

1. Theorem: There exists an OPI from \mathbb{N} to \mathbb{Z}.

- Can you guess what it is?
- Identity mapping $f(n)=n$.

2. Theorem: There is no OPS from \mathbb{N} to \mathbb{Z}.

- Follows from proof that there is no OPB from \mathbb{N} to \mathbb{Z}.

3. Corollary: $\mathbb{N}<\mathbb{Z}$

- Follows from Theorems 1 and 2

\mathbb{Z}, \mathbb{Q} : Different or the Same?

1. Theorem: There is no OPB from \mathbb{Z} to \mathbb{Q}.

- Proof (by contradiction): Assume there exists an $\operatorname{OPB} f: \mathbb{Z} \mapsto \mathbb{Q}$. Let $f(0)=y_{1}, f(1)=y_{2}$. Then, f is clearly an OPS as well!
- Now, finish yourselves at your desks!

\mathbb{Z}, \mathbb{Q} : Different or the Same?

- Theorem: There is no OPB from \mathbb{Z} to \mathbb{Q}.
- Proof (by contradiction): Assume there exists an OPB $f: \mathbb{Z} \mapsto \mathbb{Q}$. Let $f(0)=$ $y_{1}, f(1)=y_{2}$. Then, f is clearly an OPS as well!
- Now, finish yourselves at your desks!
- Let $x \in \mathbb{Z}$ map to $\frac{y_{1}+y_{2}}{2}$
- $(0<1) \Rightarrow(f(0)<f(1)) \Rightarrow\left(y_{1}<y_{2}\right)$, since f is an OPB.
- $y_{1}<\frac{y_{1}+y_{2}}{2}<y_{2}$ since $\frac{y_{1}+y_{2}}{2}$ arithmetic mean of y_{1}, y_{2}
- Henceforth, $0<x<1$
- Contradiction, since $x \in \mathbb{Z}$
- So there is no OPB from \mathbb{Z} to \mathbb{Q}.

$\mathbb{Z} \prec \mathbb{Q}$

1. Theorem: There exists an OPI from \mathbb{Z} to \mathbb{Q}.

- Identity mapping $f(z)=z$.

2. Theorem: There is no OPS from \mathbb{Z} to \mathbb{Q}.

- Follows from proof that there is no OPB from \mathbb{N} to \mathbb{Z}
- Corollary: $\mathbb{Z} \prec \mathbb{Q}$
- Follows from Theorems 1 and 2
- Note that we now have:

$$
\mathbb{N} \prec \mathbb{Z} \prec \mathbb{Q}
$$

Orderings of Type \mathbb{N}

- Recall: The following sets are of cardinality \mathcal{N}_{0} :
- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{N} \times \mathbb{N}, \ldots$
- What sets are of ordinality N ?
- $\mathbb{N}, \mathbb{N}^{\text {even }}, \mathbb{N}^{\text {odd }}, \mathbb{N} \equiv\left(0(\bmod 3), \mathbb{N}^{\equiv i(\bmod j)}, \mathbb{N}^{\geq 17}, \ldots\right.$

Orderings of Type \mathbb{N}

- Recall: The following sets are of cardinality \aleph_{0} :
- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{N} \times \mathbb{N}, \ldots$
- What sets are of ordinality \mathbb{N} ?
- $\mathbb{N}, \mathbb{N}^{\text {even }}, \mathbb{N}^{\text {odd }}, \mathbb{N} \equiv(0 \bmod 3), \mathbb{N} \equiv i(\bmod j), \mathbb{N}^{\geq 17}, \ldots$
- Is the following set of ordinality \mathbb{N} ?

$$
\left\{0, \frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \ldots\right\} \quad \text { Yes } \quad \text { No }
$$

Orderings of Type \mathbb{N}

- Recall: The following sets are of cardinality \aleph_{0} :
- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{N} \times \mathbb{N}, \ldots$
- What sets are of ordinality \mathbb{N} ?
$\cdot \mathbb{N}, \mathbb{N}^{\text {even }}, \mathbb{N}^{\text {odd }}, \mathbb{N}^{\equiv(0 \bmod 3)}, \mathbb{N}^{\equiv i(\bmod j)}, \mathbb{N}^{\geq 17}, \ldots$
- Is the following set of ordinality \mathbb{N} ?

$$
f(n)=\frac{2^{n}-1}{2^{n}}\left\{\begin{array}{c}
\left\{\begin{array}{c}
1 \\
0, \frac{3}{2}, \frac{7}{4}, \ldots \\
\uparrow \uparrow \uparrow \uparrow
\end{array}\right\} \\
0,1,2,3, \ldots
\end{array}\right.
$$

Another Ordering

- Consider ordering

$$
0<\frac{1}{2}<\frac{3}{4}<\cdots<1<\frac{3}{2}<\frac{7}{4}<\cdots
$$

Another Ordering

- Consider ordering

$$
0<\frac{1}{2}<\frac{3}{4}<\cdots<1<\frac{3}{2}<\frac{7}{4}<\cdots
$$

-What do you call this?

Another Ordering

- Consider ordering

$$
0<\frac{1}{2}<\frac{3}{4}<\cdots<1<\frac{3}{2}<\frac{7}{4}<\cdots
$$

- What do you call this?
$\mathbb{N}+\mathbb{N}$

How Do $\mathbb{N}+\mathbb{N}$ and \mathbb{Z} Compare?

$\mathbb{N}+\mathbb{N} \preccurlyeq \mathbb{Z}$

$\mathbb{N}+\mathbb{N} \succcurlyeq \mathbb{Z}$

Unknown to science

How Do $\mathbb{N}+\mathbb{N}$ and \mathbb{Z} Compare?

$\mathbb{N}+\mathbb{N} \nless \mathbb{Z}$

- Recall: $\mathbb{N}+\mathbb{N}$ is:

$$
0<\frac{1}{2}<\frac{3}{4}<\cdots<1<\frac{3}{2}<\frac{7}{4}<\cdots
$$

- While \mathbb{Z} is:

$$
\ldots<-3<-2<-1<0<1<2<3<\ldots
$$

- To say that $\mathbb{N}+\mathbb{N}<\mathbb{Z}$ would be equivalent to saying that there exists an OPI from $\mathbb{N}+\mathbb{N}$ to \mathbb{Z}.

$\mathbb{N}+\mathbb{N} \nless \mathbb{Z}$

- $\mathbb{N}+\mathbb{N}$ is:

$$
0<\frac{1}{2}<\frac{3}{4}<\cdots<1<\frac{3}{2}<\frac{7}{4}<\cdots
$$

$\mathbb{N}+\mathbb{N} \nless \mathbb{Z}$

- $\mathbb{N}+\mathbb{N}$ is:

$$
\begin{gathered}
0<\frac{1}{2}<\frac{3}{4}<\cdots<1<\frac{3}{2}<\frac{7}{4}<\cdots \\
\ldots<-3)<-2<-1<0<1<2<3<\cdots<499<500<\cdots
\end{gathered}
$$

- Suppose we actually do have an OPI $f: \mathbb{N}+\mathbb{N} \rightarrow \mathbb{Z}$ such that $f(0)=-3, f(1)=500$.

$\mathbb{N}+\mathbb{N} \nless \mathbb{Z}$

- $\mathbb{N}+\mathbb{N}$ is:

$$
\begin{gathered}
0<\frac{1}{2}<\frac{3}{4}<\cdots<1<\frac{3}{2}<\frac{7}{4}<\cdots \\
\ldots<-3)<-2<-1<0<1<2<3<\cdots<499<500<\cdots
\end{gathered}
$$

- Suppose we actually do have an OPI $f: \mathbb{N}+\mathbb{N} \rightarrow \mathbb{Z}$ such that $f(0)=-3, f(1)=500$.
- Impossible, since there are 504 elements between -3 and 500 in \mathbb{Z} (finite number), while there are infinite elements between 0 and 1 in $\mathbb{N}+\mathbb{N}$!

$\mathbb{N}+\mathbb{N} \nless \mathbb{Z}$

- $\mathbb{N}+\mathbb{N}$ is:

$$
\begin{gathered}
0<\frac{1}{2}<\frac{3}{4}<\cdots<1<\frac{3}{2}<\frac{7}{4}<\cdots \\
\ldots-3<-2<-1<0<1<2<3<\cdots<499<500<\cdots
\end{gathered}
$$

- Suppose we actually do have an OPI $f: \mathbb{N}+\mathbb{N} \rightarrow \mathbb{Z}$ such that $f(0)=-3, f(1)=500$.
- Impossible, since there are 504 elements between -3 and 500 in \mathbb{Z} (finite number), while there are infinite elements between 0 and 1 in $\mathbb{N}+\mathbb{N}$!
- Therefore, no such OPI f can exist.

$\mathbb{Z} \nless \mathbb{N}+\mathbb{N}$

- It is also the case that \mathbb{Z} cannot be injected (with a preserved ordering) into $\mathbb{N}+\mathbb{N}$
- Recall: $\mathbb{N}+\mathbb{N}$ is:

$$
0<\frac{1}{2}<\frac{3}{4}<\cdots<1<\frac{3}{2}<\frac{7}{4}<\cdots
$$

- While \mathbb{Z} is:

$$
\ldots<-3<-2<-1<0<1<2<3<\ldots
$$

$\mathbb{Z} \nless \mathbb{N}+\mathbb{N}$

- Suppose that we have such an OPI f from \mathbb{Z} to $\mathbb{N}+\mathbb{N}$.

$$
\begin{gathered}
0<\frac{1}{2}<\frac{3}{4}<\cdots<1<\frac{3}{2}<\frac{7}{4}<\cdots \\
\ldots<-3<-2<-1<0<1<2<3<\cdots
\end{gathered}
$$

$\mathbb{Z} \nless \mathbb{N}+\mathbb{N}$

- Suppose that we have such an OPI f from \mathbb{Z} to $\mathbb{N}+\mathbb{N}$.

$$
\begin{aligned}
& 0<\frac{1}{2}<\frac{3}{4}<\cdots<1<\frac{3}{2}<\frac{7}{4}<\cdots \\
& \ldots<-3<-2<-1<0<1<2<3<\cdots
\end{aligned}
$$

- Suppose $f(-3)=0$. Then, what would $f(-4)$ be?

$\mathbb{Z} \nless \mathbb{N}+\mathbb{N}$

- Suppose that we have such an OPI f from \mathbb{Z} to $\mathbb{N}+\mathbb{N}$.

$$
\begin{aligned}
& 0<\frac{1}{2}<\frac{3}{4}<\cdots<1<\frac{3}{2}<\frac{7}{4}<\cdots \\
& \ldots<-3<-2<-1<0<1<2<3<\cdots
\end{aligned}
$$

- Suppose $f(-3)=0$. Then, what would $f(-4)$ be?
- Since f is order-preserving, there is no such element in $\omega+\omega$!
- Therefore, no such OPI f can possibly exist!

How Do $\mathbb{N}+\mathbb{N}$ and \mathbb{Q} Compare?

$$
\mathbb{N}+\mathbb{N} \preccurlyeq \mathbb{Q}
$$

\square

Unknown to science

How Do $\mathbb{N}+\mathbb{N}$ and \mathbb{Q} Compare?

$\mathbb{N}+\mathbb{N} \preccurlyeq \mathbb{Q}$

$\mathbb{N}+\mathbb{N} \succcurlyeq \mathbb{Q}$

Unknown to science

- We leave the proofs of both $\mathbb{N}+\mathbb{N} \preccurlyeq \mathbb{Q}$ and $\mathbb{N}+\mathbb{N} \nsucc \mathbb{Q}$ to you.

Take-Home Message

- Orders can be non-comparable.
- Cardinalities are always comparable.

STOP

RECORDING

