## Start Recording

# Pigeonhole Principle 

CMSC250

## Look at These Pigeons.



Figure: Look

## Examples First

(1) Is there a pair of you with the same birthday month?

## Examples First

(1) Is there a pair of you with the same birthday month? Yes, since there are more than 12 of you!
(2) Is there a pair of you with the same birthday week?

## Examples First

(1) Is there a pair of you with the same birthday month? Yes, since there are more than 12 of you!
(2) Is there a pair of you with the same birthday week?Not guaranteed, since there are less than 52 of you!
(3) Is there a pair of New Yorkers with the same number of hairs on their heads?

## Examples First

(1) Is there a pair of you with the same birthday month? Yes, since there are more than 12 of you!
(2) Is there a pair of you with the same birthday week?Not guaranteed, since there are less than 52 of you!
(3) Is there a pair of New Yorkers with the same number of hairs on their heads? Yes! Number of hairs on your head $\leq 300,000$, New Yorkers $\geq 8,000,000$.

## Examples First

(1) Let $A=\{1,2,3,4,5,6,7,8\}$. If I pick 5 integers, is it the case that at least one pair of integers has a sum of 9 ?

## Examples First

(1) Let $A=\{1,2,3,4,5,6,7,8\}$. If I pick 5 integers, is it the case that at least one pair of integers has a sum of 9 ? Yes. Boxes $=$ pairs of ints that sum to 9 :
$(1,8)$
$(2,7)$
$(3,6)$
$(4,5)$
and balls $=$ ints to pick.

## Examples First

(0) Let $A \subseteq\{1,2, \ldots, 10\}$, and $|A|=6$. Is there a pair of subsets of $A$ that have the same sum?

## Examples First

(0) Let $A \subseteq\{1,2, \ldots, 10\}$, and $|A|=6$. Is there a pair of subsets of $A$ that have the same sum? Yes.
There are $2^{6}=64$ subsets of $A$. Max sum: $10+9+\cdots+5=45$ Min sum: 0
46 different sums (boxes)
64 different subsets (balls).

## Examples First

(6) Is it true that within a group of 700 people, there must be 2 who have the same first and last initials?

## Examples First

(6) Is it true that within a group of 700 people, there must be 2 who have the same first and last initials? Yes. There are $26^{2}=676$ different sets of first and last initials (boxes) There are 700 people (balls).

## Formal Statement of the Principle

## Pigeonhole Principle

Let $m, n \in \mathbb{N}^{\geq 1}$. If $n$ balls are put into $m$ boxes and $n>m$, then at least one box will contain more than one ball.

## Formal Statement of the Principle

## Pigeonhole Principle

Let $m, n \in \mathbb{N}^{\geq 1}$. If $n$ balls are put into $m$ boxes and $n>m$, then at least one box will contain more than one ball.

- Can I have empty boxes?

$$
\begin{array}{|l|l|}
\hline \text { Yes } & \text { No } \\
\hline
\end{array}
$$

## Formal Statement of the Principle

## Pigeonhole Principle

Let $m, n \in \mathbb{N} \geq 1$. If $n$ balls are put into $m$ boxes and $n>m$, then at least one box will contain more than one ball.

- Can I have empty boxes?


## Yes No

Absolutely. Only thing we need is one box with at least 2 balls.

- Example: There might not be somebody with initials $(X, Y)$.


## Pigeonhole Principle (in functions)

Let $A$ and $B$ be finite sets such that $|A|>|B|$. Then, there does not exist a one-to-one function $f: A \mapsto B$.

## Some More Advanced Examples

(1) If there are 105 of you, do at least $\mathbf{9}$ of you have the same birthday month?

## Some More Advanced Examples

(1) If there are 105 of you, do at least $\mathbf{9}$ of you have the same birthday month? Yes. If there are at most 8 , then $8 \times 12=96<105$, but $9 \times 12=108>105$
(2) If there are 105 of you, are there at least $\mathbf{3}$ of you with the same birthday week?

## Some More Advanced Examples

(1) If there are 105 of you, do at least $\mathbf{9}$ of you have the same birthday month? Yes. If there are at most 8 , then $8 \times 12=96<105$, but $9 \times 12=108>105$
(2) If there are 105 of you, are there at least $\mathbf{3}$ of you with the same birthday week? Yes. If there are at most 2 , then $2 \times 52=104<105$
(3) Is it true that within a group of 86 people, there exist at least 4 with the same last initial (e.g B for Justin Bieber).

## Some More Advanced Examples

(1) If there are 105 of you, do at least $\mathbf{9}$ of you have the same birthday month? Yes. If there are at most 8 , then $8 \times 12=96<105$, but $9 \times 12=108>105$
(2) If there are 105 of you, are there at least $\mathbf{3}$ of you with the same birthday week? Yes. If there are at most 2 , then $2 \times 52=104<105$
(3) Is it true that within a group of 86 people, there exist at least 4 with the same last initial (e.g B for Justin Bieber). Yes. Boxes $=$ $\#$ initials $=26$. For $k=3,86>3 \times 26=78$

## Another Interesting Example

(1) Let $M=\{1,2,3, \ldots, 1000\}$ and suppose $A \subseteq M$ such that $|A|=20$. How many subsets of $\mathbf{A}$ sum to the same number?

## Another Interesting Example

(1) Let $M=\{1,2,3, \ldots, 1000\}$ and suppose $A \subseteq M$ such that $|A|=20$. How many subsets of $\mathbf{A}$ sum to the same number?
There are $2^{20}$ subsets of $A$. The max sum is
$1000+999+\cdots+981=\sum_{i=1}^{1000} i-\sum_{i=1}^{980} i \xlongequal{\text { Gauss }} \frac{1000 \cdot 1001}{2}-\frac{980 \cdot 981}{2}=$ 19810. The min sum is 0 , corresponding to $\emptyset \subseteq A$. So 19811 sums. Since $\left\lceil 2^{20} / 19811\right\rceil=53$ (yes, you may totally use a calculator here), there are 53 subsets of $A$ that sum to the same number.

## Another Interesting Example

(1) Let $M=\{1,2,3, \ldots, 1000\}$ and suppose $A \subseteq M$ such that $|A|=20$. How many subsets of $\mathbf{A}$ sum to the same number?
There are $2^{20}$ subsets of $A$. The max sum is
$1000+999+\cdots+981=\sum_{i=1}^{1000} i-\sum_{i=1}^{980} i \xlongequal{\text { Gauss }} \frac{1000 \cdot 1001}{2}-\frac{980 \cdot 981}{2}=$ 19810. The min sum is 0 , corresponding to $\emptyset \subseteq A$. So 19811 sums. Since $\left\lceil 2^{20} / 19811\right\rceil=53$ (yes, you may totally use a calculator here), there are 53 subsets of $A$ that sum to the same number.
The proof is Non-constructive: Cannot use the proof to find the 53 sets.

## Generalization

## Generalized Pigeonhole Principle

Let $n$ and $m$ be positive integers. If n balls are placed into m boxes then some box has at least $\left\lceil\frac{n}{m}\right\rceil$ balls.

- Our second example set consisted of examples of the generalized form of the principle.


## Stop Recording

