START

RECORDING

Discrete Probability

CMSC 250

Axiomatic Definitions, Basic Problems with Cards

Informal Definition of Probability

- Probability that blah happens:
\# possibilities that blah happens
\# all possibilities

Informal Definition of Probability

- Probability that blah happens:
\# possibilities that blah happens
\# all possibilities
- This definition is owed to Andrey Kolmogorov, and assumes that all possibilities are equally likely!

First Examples

- Experiment \#1: Tossing the same coin 3 times.

First Examples

- Experiment \#1: Tossing the same coin 3 times.
- What is the probability that I don't get any heads?

First Examples

- Experiment \#1: Tossing the same coin 3 times.
- What is the probability that I don't get any heads?
- Why?

- Set of different events?
- \{HHH,HHT, HTH, HTT, THH,THT,TTH,TTT\} (8 of them)
- Set of events with no heads:
- $\{$ TTTT $\}$ (1 of them)
- Hence the answer: $\frac{1}{8}$

First Examples

- Experiment \#1: Tossing the same coin 3 times.
- What is the probability that I don't get any heads?
- Why?

- Set of different events?
- \{HHH, HHT, HTH, HTT , THH,THT,TTH,TTT\} (8 of them)
- Set of events with no heads:
- $\{T T T\}$ (1 of them)
- Hence the answer: $\frac{1}{8} \quad$ Implicit assumption: all individual outcomes (HHH, HHT, HTH,) are considered equally likely (probability 1/8)

Practice

- Experiment \#2: I roll two dice.
- Probability that I hit seven = ?

| $\frac{1}{12}$ | $\frac{1}{6}$ | $\frac{7}{12}$ |
| :---: | :---: | :---: | | Something
 else |
| :---: |

Practice

- Experiment \#2: I roll two dice.
- Probability that I hit seven = ?
- Why?

- Set of different events?
- $\{(1,1),(1,2), \ldots,(6,1)\}$ (36 of them)
- Set of events where we hit 7 .
- $\{(2,5),(5,2),(3,4),(4,3),(1,6),(6,1)\}$ (6 of them)
- Hence the answer: $\frac{6}{36}=\frac{1}{6}$

Practice

- Experiment \#2: I roll two dice.
- Probability that I hit seven = ?
- Why?

- Set of different events?
- $\{(1,1),(1,2), \ldots,(6,1)\}$ (36 of them)
- Set of events where we hit 7 .
- $\{(2,5),(5,2),(3,4),(4,3),(1,6),(6,1)\}(6$ of them)
- Hence the answer: $\frac{6}{36}=\frac{1}{6}$
- Probability that I hit two= ?

| $\frac{1}{12}$ | $\frac{1}{6}$ | $\frac{7}{12}$ |
| :--- | :--- | :--- | | Something
 else |
| :---: |

Practice

- Experiment \#2: I roll two dice.
- Probability that I hit seven = ?
- Why?

- Set of different events?
- $\{(1,1),(1,2), \ldots,(6,1)\}$ (36 of them)
- Set of events where we hit 7 .
- $\{(2,5),(5,2),(3,4),(4,3),(1,6),(6,1)\}$ (6 of them)
- Hence the answer: $\frac{6}{36}=\frac{1}{6}$
- Probability that I hit two= ?
- Same procedure

Poker Practice

- Full deck $=52$ cards, 13 of each suit:

Poker Practice

- Full deck = 52 cards, 13 of each suit:
- Flush: 5 cards of the same suit
- What is the probability of getting a flush?

Probability of a Flush

- How many 5-card hands are there?

Probability of a Flush

- How many 5 -card hands are there? $\binom{52}{5}$

Probability of a Flush

- How many 5-card hands are there? $\binom{52}{5}$
- How many 5 -card hands are flushes?

Probability of a Flush

- How many 5-card hands are there? $\binom{52}{5}$
- How many 5 -card hands are flushes?
- Choose a suit in one of 4 ways...

Probability of a Flush

- How many 5-card hands are there? $\binom{52}{5}$
- How many 5 -card hands are flushes?
- Choose a suit in one of 4 ways...
- Given suit choose any 5 cards out of 13...

Probability of a Flush

- How many 5-card hands are there? $\binom{52}{5}$
- How many 5 -card hands are flushes?
- Choose a suit in one of 4 ways...
- Given suit choose any 5 cards out of 13...
- So $4 *\binom{13}{5}$

Probability of a Flush

- How many 5 -card hands are there? $\binom{52}{5}$
- How many 5 -card hands are flushes?
- Choose a suit in one of 4 ways...
- Given suit choose any 5 cards out of 13 ...
- So $4 *\binom{13}{5}$
- So, probability of being dealt a flush is

$$
\frac{4 *\binom{13}{5}}{\binom{52}{5}}
$$

Probability of a Flush

- Probability of being dealt a flush is

$$
\frac{4 *\binom{13}{5}}{\binom{52}{5}}
$$

Probability of a Flush

- Probability of being dealt a flush is

$$
\frac{4 *\binom{13}{5}}{\binom{52}{5}}
$$

- How likely is this?

Probability of a Flush

- Probability of being dealt a flush is

$$
\frac{4 *\binom{13}{5}}{\binom{52}{5}}
$$

- How likely is this?
- Not at all likely: $\approx 0.002=0.2 \%$:

Likelihood of a Straight

- Straights are 5 cards of consecutive rank
- Ace can be either end (high or low)
- No wrap-arounds (e.g Q K A 2 3, suits don't matter)
- What is the probability that we are dealt a straight?

Likelihood of a Straight

- Straights are 5 cards of consecutive rank
- Ace can be either end (high or low)
- No wrap-arounds (e.g Q K A 2 3, suits don't matter)
- What is the probability that we are dealt a straight?
- As before, \#possible 5-card hands $=\binom{52}{5}$

Likelihood of a Straight

- Straights are 5 cards of consecutive rank
- Ace can be either end (high or low)
- No wrap-arounds (e.g Q K A 2 3, suits don't matter)
- What is the probability that we are dealt a straight?
- As before, \#possible 5-card hands $=\binom{52}{5}$
- To find out the \#straights:
- Pick lower rank in 10 ways (A-10)
- Pick a suit in 4 ways
- Pick the 4 subsequent cards from any suit in 4^{4} ways

Likelihood of a Straight

- Straights are 5 cards of consecutive rank
- Ace can be either end (high or low)
- No wrap-arounds (e.g Q K A 2 3, suits don't matter)
- What is the probability that we are dealt a straight?
- As before, \#possible 5-card hands $=\binom{52}{5}$
- To find out the \#straights:
- Pick lower rank in 10 ways (A-10)
- Pick a suit in 4 ways
- Pick the 4 subsequent cards from any suit in 4^{4} ways

That's $10 * 4^{5}$ ways.
So, probability of a
straight $=\frac{10 * 4^{5}}{\binom{52}{5}}$

Caveat on Flushes

- Wikipedia says we're wrong about flushes!
- Formally, our flushes included (for example) 3h 4h 5h 6h 7h
- Hands like these are called straight flushes and Wikipedia does not include them.

Caveat on Flushes

- Wikipedia says we're wrong about flushes!
- Formally, our flushes included (for example) 3h 4h 5h 6h 7h
- Hands like these are called straight flushes and Wikipedia does not include them.
- How many straight flushes are there?

Caveat on Flushes

- Wikipedia says we're wrong about flushes!
- Formally, our flushes included (for example) 3h 4h 5h 6h 7h
- Hands like these are called straight flushes and Wikipedia does not include them.
- How many straight flushes are there?
- 40. Here's why:
- Pick rank: A through 10 (higher ranks don't allow straights) in 10 ways
- Pick suit in 4 ways

Probability of Non-Straight Flush...

$$
\frac{4 *\binom{13}{5}-40}{\binom{52}{5}}=0.001965
$$

- This is how Wikipedia defines the probability of a flush. ©

Probability of a Straight Flush...

$$
\frac{40}{\binom{52}{5}}=0.0000138517
$$

Probability of a Straight Flush...

$$
\frac{40}{\binom{52}{5}}=0.0000138517
$$

The expected \# hands you need to play to get a straight flush is then
$\left\lceil\frac{1}{0.0000138517}\right\rceil=72,194$

Same Caveat for Straights

- From the \#straights we computed we will have to subtract the 40 possible straight flushes to get...

$$
\frac{10 * 4^{5}-40}{\binom{52}{5}}=0.003925
$$

Same Caveat

- From the \#straights we computed we will have to subtract the 40 possible straight flushes to get...

$$
\frac{10 * 4^{5}-40}{\binom{52}{5}}=0.003925>0.001965=\text { probability of flush }
$$

- Flushes, being more rare, beat straights in poker.

Probability of a Pair

- Try to calculate the probability of a pair!

Probability of a Pair

- Try to calculate the probability of a pair!
- Perhaps you thought of the problem like this:
- The denominator will be $\binom{52}{5}$ (easy), so let's focus on the numerator:

1. First choose rank in 13 ways.
2. Then, choose two of four suits in $\binom{4}{2}=6$ ways.
3. Then, choose 3 cards out of 50 in $\binom{50}{3}$ ways.

Probability of a Pair

- Try to calculate the probability of a pair!
- Perhaps you thought of the problem like this:
- The denominator will be $\binom{52}{5}$ (easy), so let's focus on the numerator:

1. First choose rank in 13 ways.
2. Then, choose two of four suits in $\binom{4}{2}=6$ ways. \square Numerator: $13 \times 6 \times$
3. Then, choose 3 cards out of 50 in $\binom{50}{3}$ ways.

Probability of a Pair

- Try to calculate the probability of a pair!
- Perhaps you thought of the problem like this:
- The denominator will be $\binom{52}{5}$ (easy), so let's focus on the numerator:

1. First choose rank in 13 ways.
2. Then, choose two of four suits in $\binom{4}{2}=6$ ways.

3. Then, choose 3 cards out of 50 in $\binom{50}{3}$ ways.

- So, probability $=\frac{13 \times 6 \times\binom{ 50}{3}}{\binom{52}{5}}$

Probability of a Pair

- Try to calculate the probability of a pair!
- Perhaps you thought of the problem like this:
- The denominator will be $\binom{52}{5}$ (easy), so let's focus on the numerator:

1. First choose rank in 13 ways.
2. Then, choose two of four suits in $\binom{4}{2}=6$ ways.
 Numerator: $13 \times 6 \times$
3. Then, choose 3 cards out of 50 in $\binom{50}{3}$ ways.
 $\binom{50}{3}$

- So, probability $=\frac{13 \times 6 \times\binom{ 50}{3}}{\binom{52}{5}}$

Is this accurate?

Probability of a Pair

- Try to calculate the probability of a pair!
- Perhaps you thought of the problem like this:
- The denominator will be $\binom{52}{5}$ (easy), so let's focus on the numerator:

1. First choose rank in 13 ways.
2. Then, choose two of four suits in $\binom{4}{2}=6$ ways. \square Numerator: $13 \times 6 \times$
3. Then, choose 3 cards out of 50 in $\binom{50}{3}$ ways.
 $\binom{50}{3}$

- So, probability $=\frac{13 \times 6 \times\binom{ 50}{3}}{\binom{52}{5}}$

Is this accurate? $\begin{aligned} & \text { Severe } \\ & \text { overcount! }\end{aligned}$

Don't Count Better Hands!

- In the computation before, we included:
-3-of-a-kind
- 4-of-a-kind
- etc
- To properly compute, we would have to subtract all better hands possible with at least one pair.

Joint Probability

Joint Probability ("AND" of Two Events)

- The probability that two events A and B occur simultaneously is known as the joint probability of A and B and is denoted in a number of ways:
- $P(A \cap B)$ (Most useful from a set-theoretic perspective; we'll be using this)
- $P(A, B)$ (One sees this a lot in Physics books)
- $P(A B)$ (Perhaps most convenient, therefore most common)

Calculating Joints

- Probability that the first coin toss is heads and the second coin toss is tails

Calculating Joints

- Probability that the first coin toss is heads and the second coin toss is tails $\frac{1}{2} \times \frac{1}{2}$

Calculating Joints

- Probability that the first coin toss is heads and the second coin toss is tails $\frac{1}{2} \times \frac{1}{2}$
- Probability that the first die is at most a 2 and the second one is 5 or 6

Calculating Joints

- Probability that the first coin toss is heads and the second coin toss is tails $\frac{1}{2} \times \frac{1}{2}$
- Probability that the first die is at most a 2 and the second one is 5 or 6
- \# outcomes of die roll is 6
- \# outcomes where first die is at most 2 is 2
- Hence, probability of first die roll being at most 2 is $\frac{1}{3}$

Calculating Joints

- Probability that the first coin toss is heads and the second coin toss is tails $\frac{1}{2} \times \frac{1}{2}$
- Probability that the first die is at most a 2 and the second one is 5 or 6
- \# outcomes of die roll is 6
- \# outcomes where first die is at most 2 is 2
- Hence, probability of first die roll being at most 2 is $\frac{1}{3}$
- Similarly, probability of second die roll being 5 or 6 is $\frac{1}{3}$.
- Hence, probability that both events happen (joint probability) is $\frac{1}{9}$.

Calculating Joints

- Jason's going to flip a coin and then pick a card from a 52-card deck.
- Probability that the coin is heads and the card has rank 8?

| $\frac{1}{2}$ | $\frac{1}{26}$ | $\frac{1}{32}$ |
| :--- | :--- | :--- | | Something
 else |
| :---: |

Calculating Joints

- Jason's going to flip a coin and then pick a card from a 52-card deck
- Probability that the coin is heads and the card has rank 8?

- This is because $P($ coin $=H)=\frac{1}{2}$ and $P($ card_rank $=8)=\frac{4}{52}=\frac{1}{13}$
- So their joint probability is $\frac{1}{2} \times \frac{1}{13}=\frac{1}{26}$

The Law of Joint Probability

$$
\begin{aligned}
& P(A \cap B)=P(A) \cdot P(B) \\
& P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)=\prod_{i=1}^{n} P\left(A_{i}\right)
\end{aligned}
$$

The Law of Joint Probability

$$
\begin{aligned}
& P(A \cap B)=P(A) \cdot P(B) \\
& P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)=\prod_{i=1}^{n} P\left(A_{i}\right)
\end{aligned}
$$

- Unfortunately, this "law" is not always applicable!
- It is applicable only when all the different events A_{i} are independent (sometimes called marginally independent) of each other.
- Let's look at an example.

What If The Events Influence Each Other?

- Probability that a die is even and that it is 2 .

What If The Events Influence Each Other?

- Probability that a die is even and that it is 2 .
- Probability that the die is even $=\frac{1}{2}$

What If The Events Influence Each Other?

- Probability that a die is even and that it is 2 .
- Probability that the die is even $=\frac{1}{2}$
- Probability that the die is two $=\frac{1}{6}$

What If The Events Influence Each Other?

- Probability that a die is even and that it is 2.
- Probability that the die is even $=\frac{1}{2}$
- Probability that the die is two $=\frac{1}{6}$
- Probability the die is even and the die is two $=\frac{1}{12}$???

What If The Events Influence Each Other?

- Probability that a die is even and that it is 2.
- Probability that the die is even $=\frac{1}{2}$
- Probability that the die is two $=\frac{1}{6}$
- Probability the die is even and the die is two $=\frac{1}{12}$???
- NO!

- What is the probability that the die is even and the die is 2 ?

What If The Events Influence Each Other?

- Probability that a die is even and that it is 2 .
- Probability that the die is even $=\frac{1}{2}$
- Probability that the die is two $=\frac{1}{6}$
- Probability the die is even and the die is two $=\frac{1}{12}$???
- NO!

- What is the probability that the die is even and the die is 2 ?

Set-Theoretic Interpretation

- Notice that the event A: "Die roll is even" is a superset of the event B: "Die roll comes 2"

- Die roll even
- Die roll comes 2
- Since $A \cap B=A, P(A \cap B)=P(A)=\frac{1}{6}$

Calculating Joints

- The University of Southern North Dakota offers a Discrete Mathematics Course where the possible grades are A through G. (No + or -)
- What is the probability that Jason gets both an A and a G in that course?

Calculating Joints

- The University of Southern North Dakota offers a Discrete Mathematics Course where the possible grades are A through G. (No + or -)
- What is the probability that Jason gets both an A and a G in that course?
- Clearly, it can't be
(probability Jason gets an A) X(probability Jason gets a B) $=\frac{1}{7} \times \frac{1}{7}=\frac{1}{49}$

Calculating Joints

- The University of Southern North Dakota offers a Discrete Mathematics Course where the possible grades are A through G. (No + or -)
- What is the probability that Jason gets both an A and $\mathrm{a} G$ in that course?
- Clearly, it can't be

Calculating Joints

- The University of Southern North Dakota offers a Discrete Mathematics Course where the possible grades are A through G. (No + or -)
- What is the probability that Jason gets both an A and a G in that course?
- Clearly, it can't be
(probability Jason getch (proban aets a B) $=\frac{1}{7} \times \frac{1}{7}=\frac{1}{49}$
- It is 0 . Those two events cannot happen jointly!

Calculating Joints

- The University of Southern North Dakota offers a Discrete Mathematics Course where the possible grades are A through G. (No + or -)
- What is the probability that Jason gets both an A and $\mathrm{a} G$ in that course?
- Clearly, it can't be
(probability Jason getch (proban aets a B) $=\frac{1}{7} \times \frac{1}{7}=\frac{1}{49}$
- It is 0 . Those two events cannot happen jointly!
- Events such as these are called disjoint or mutually disjoint.

Set-Theoretic Interpretation

- A = "Jason gets an A in USND's 250"
- G="Jason gets a G in USND's 250"

- Note that $A \cap G=\varnothing$, so there are no common outcomes.
- So $P(A \cap G)=0$

Calculating Joints

- I have my original die again.
- Probability that it comes up 1,2 or $3=\frac{1}{2}$
- Probability that it comes up 3,4 or $5=\frac{1}{2}$
- What is the probability that it comes up 1,2 or 3 and 3,4 or 5 ?

Calculating Joints

- I have my original die again.
- Probability that it comes up 1,2 or $3=\frac{1}{2}$
- Probability that it comes up 3,4 or $5=\frac{1}{2}$
- What is the probability that it comes up 1,2 or 3 and 3,4 or 5 ?

Calculating Joints

- I have my original die again.
- Probability that it comes up 1,2 or $3=\frac{1}{2}$
- Probability that it comes up 3,4 or $5=\frac{1}{2}$
- What is the probability that it comes up 1,2 or 3 and 3,4 or 5 ?

\square
- Note that the only common outcome between the two events is 3 , which can come up only once out of six possibilities.

Set-Theoretic Interpretation

- Let $\mathrm{A}=$ dice comes up 1,2 , or 3
- Let $B=$ dice comes up 3,4 , or 5
- Let $\mathrm{C}=$ dice comes up 1, 2, 3, 4, 5 OR 6

Set-Theoretic Interpretation

- Let $A=$ dice comes up 1,2 , or 3
- Let $B=$ dice comes up 3,4 , or 5
- Let $\mathrm{C}=$ dice comes up 1, 2, 3, 4, 5 OR 6

- Then, probability that the dice comes up $3=\frac{1}{6}$

Dependent and Independent Events

Independent Events (informally)

- Two events are independent if one does not influence the other.
- Examples:
- The event E1 = "first coin toss" and E2 = "second coin toss"
- With the same die, the events E1 = "roll 1", E2 = "roll 2", E3 = "roll 3"
- Jason flips a coin and then picks a card.
- Counter-examples:
- E1 = "Die is even", E2="Die is 6"
- E1= "Grade in 250" and "Passing 250"

Law of Joint Probability (informally)

- Two events are independent if one does not influence the other.
- This definition is a but too informal, so mathematicians tend to avoid it.
- Formally, we define that A and B are independent if

$$
P(A \cap B)=P(A) \cdot P(B)
$$

Disjoint or Independent?

1. $E_{1}=$ "It rains in College Park, MD today"
$E_{2}=$ "It rains in Athens, Greece today"
Disjoint
Independent
Both
Neither

Disjoint or Independent?

1. $E_{1}=$ "It rains in College Park, MD today" $E_{2}=$ "It rains in Athens, Greece today"

Disjoint or Independent?

1. $E_{1}=$ "It rains in College Park, MD today"
$E_{2}=$ "It rains in Athens, Greece today"

2. $E_{1}=$ "It rains in College Park, MD today"
$E_{2}=$ "It is sunny in College Park, MD today"

Disjoint or Independent?

1. $E_{1}=$ "It rains in College Park, MD today" $E_{2}=$ "It rains in Athens, Greece today"
2. $E_{1}=$ "It rains in College Park, MD today" $E_{2}=$ "It is sunny in College Park, MD toda

Disjoint or Independent?

1. $E_{1}=$ "It rains in College Park, MD today" $E_{2}=$ "It rains in Athens, Greece today"
2. $E_{1}=$ "It rains in College Park, MD today" $E_{2}=$ "It is sunny in College Park, MD today"

Disjoint Independent Both
Neither

Disjoint or Independent?

1. $E_{1}=$ "It rains in College Park, MD today" $E_{2}=$ "It rains in Athens, Greece today"
2. $E_{1}=$ "It rains in College Park, MD today" $E_{2}=$ "It is sunny in College Park, MD toda

Disjoint or Independent?

1. $E_{1}=$ "It rains in College Park, MD today" $E_{2}=$ "It rains in Athens, Greece today"
2. $E_{1}=$ "It rains in College Park, MD today" $E_{2}=$ "It is sunny in College Park, MD todax" Disjoint

3. $E_{1}=$ Die \#1 comes at most 4
$E_{2}=$ Die \#2 comes at least 5

4. $\begin{aligned} E_{1} & =\text { Student gets a } C \\ E_{2} & =\text { Student passes the class }\end{aligned}$

Disjoint Independent
Both
Neither

Disjoint or Independent?

1. $E_{1}=$ "It rains in College Park, MD today" $E_{2}=$ "It rains in Athens, Greece today"
2. $E_{1}=$ "It rains in College Park, MD today" $E_{2}=$ "It is sunny in College Park, MD todax" Disjoint

3. $E_{1}=$ Die \#1 comes at most 4
$E_{2}=$ Die \#2 comes at least 5

Recap: "Disjoint" vs "Independent"

- Friends don't let friends get confused between "disjoint" and "independent"!

Disjoint	Independent
Has a set-theoretic interpretation!	Has a causality interpretation!
Means that $P(A \cap B)=0$	Means that $P(A \cap B)=P(A) \cdot P(B)$
Means that $P(A \cup B)=P(A)+P(B)$	Means that $P(A \cup B)=P(A)+P(B)-$
$P(A) \cdot P(B)$	

Disjoint Probability ("OR" of Two Events)

- Jason rolls two dice.
- What is the probability that he rolls a 7 or a 9 ?

Disjoint Probability ("OR" of Two Events)

- Jason rolls two dice.
- What is the probability that he rolls a 7 or a 9 ?
- \#Ways to roll a 7 is 6.
- \#Ways to roll a 9 is $4:(6,3),(5,4),(4,5),(3,6)$
- \#Ways to roll a 7 OR a 9 is then 10 .
- Therefore, the probability is $\frac{10}{36}=\frac{5}{18}$
- Key: Rolling a 7 and a 9 are disjoint events.

Disjoint Probability ("OR")

- 52-card deck
- Probability of drawing a face card (J, Q, K) or a heart

Disjoint Probability ("OR")

- 52-card deck
- Probability of drawing a face card (J, Q, K) or a heart
- Are these disjoint?

Disjoint Probability ("OR")

- 52-card deck
- Probability of drawing a face card (J, Q, K) or a heart
- Are these disjoint?
- NO, for example, Queen of hearts
- How big is Face_Card \cup Hearts?

Disjoint Probability ("OR")

-52-card deck

- Probability of drawing a face card (J, Q, K) or a heart
- Are these disjoint?
- NO, for example, Queen of hearts
- How big is Face_Card \cup Hearts (abbrv. F, H below)?
- Use law of inclusion / exclusion!

$$
|F \cup H|=|F|+|H|-|F \cap H|=12+13-3=22
$$

Disjoint Probability ("OR")

- 52-card deck
- Probability of drawing a face card (J, Q, K) or a heart
- Are these disjoint?
- NO, for example, Queen of hearts
- How big is Face_Card U Hearts (abbrv. F, H below)?
- Use law of inclusion / exclusion!

$$
|F \cup H|=|F|+|H|-|F \cap H|=12+13-3=22
$$

- So probability $=\frac{22}{52}=\frac{11}{26}$.

Alternative Viewpoint

- $P(F)=\frac{12}{52}$
- $P(H)=\frac{13}{52}$
- $P(F \cap H)=\frac{3}{52}$
- $P(F \cup H)=P(F)+P(H)-P(F \cap H)$

Probability of Unions

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

- If A and B are independent, we have

$$
P(A \cup B)=P(A)+P(B)-P(A) \cdot P(B)
$$

- If A and B are disjoint, we have

$$
P(A \cup B)=P(A)+P(B)
$$

Probability of Unions of 3 Sets

$$
\begin{aligned}
& P(A \cup B \cup C)=P(A)+P(B)+P(C) \\
&-P(A \cap B)-P(B \cap C)-P(A \cap C) \\
&+P(A \cap B \cap C)
\end{aligned}
$$

- If A, B and C are pairwise independent, we have :

$$
\begin{gathered}
P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A) \cdot P(B)-P(B) \cdot P(C)- \\
P(A) \cdot P(C)+P(A \cdot B \cdot C)
\end{gathered}
$$

- If A, B and C are pairwise disjoint (so $A \cap B=A \cap C=B \cap C=\emptyset$, so clearly $A \cap B \cap C=\emptyset$), we have

$$
P(A \cup B \cup C)=P(A)+P(B)+P(C)
$$

Conditional Probability and Bayes' Law

Conditional Probability

- If A occurs, then is B
a) More likely?
b) Equally likely?
c) Less likely?

Conditional Probability

- If A occurs, then is B
a) More likely?
b) Equally likely?
c) Less likely?
- Any of these could happen, it depends on the relationship between A and B.

Conditional Probability

- If A occurs, then is B
a) More likely?
b) Equally likely?
c) Less likely?
- Any of these could happen, it depends on the relationship between A and B.

OR

Examples

- We roll two dice

- Event $\mathrm{A}=$ "Sum of the dice $S \equiv 0(\bmod 4)$ "
- Note that $P(A)=\frac{9}{36}=\frac{1}{4}$, since we have nine rolls of the dice that sum to a multiple of 4:
$(1,3),(2,2),(3,1),(2,6),(3,5),(4,4),(5,3),(6,2),(6,6)$
- Event $\mathrm{B}=$ "The first die comes up 3 "
- Note that $P(B)=\frac{6}{36}=\frac{1}{6}$

Examples

- We roll two dice
- Event $\mathrm{A}=$ "Sum of the dice $S \equiv 0(\bmod 4)$ "
- Note that $P(A)=\frac{9}{36}=\frac{1}{4}$, since we have nine rolls of the dies that sum to a multiple of 4:

$$
(1,3),(2,2),(3,1),(2,6),(3,5),(4,4),(5,3),(6,2),(6,6)
$$

- Event $\mathrm{B}=$ "The first die comes up 3 "
- Note that $P(B)=\frac{6}{36}=\frac{1}{6}$
- What is the probability of A given B ?

Examples

- What is the probability of A given B ?

Examples

- What is the probability of A given B ?
- Outcomes of A are (1, 3), $(2,2),(3,1),(2,6),(3,5),(4,4),(5,3),(6,2),(6,6)$
- Outcomes of B are $(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$
- Outcomes of rolling two dice: $(1,1),(1,2), \ldots .,(6,5),(6,6)$

Examples

- What is the probability of A given B ?
- Outcomes of A are (1,3), $(2,2),(3,1),(2,6),(3,5),(4,4),(5,3),(6,2),(6,6)$
- Outcomes of B are $(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$
- Outcomes of rolling two dice: $(1,1),(1,2), \ldots .,(6,5),(6,6)$

Examples

- What is the probability of A given B ?
- Outcomes of A are (1,3), $(2,2),(3,1),(2,6),(3,5),(4,4),(5,3),(6,2),(6,6)$
- Outcomes of B are $(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$
- Outcomes of rolling two dice: $(1,1),(1,2), \ldots .,(6,5),(6,6)$
- As discussed, $P(A)=\frac{9}{36}=\frac{1}{4}$
- However, once B occurs, instead of 36 outcomes, we now have...

Examples

- What is the probability of A given B ?
- Outcomes of A are $(1,3),(2,2),(3,1),(2,6),(3,5),(4,4),(5,3),(6,2),(6,6)$

Outcomes of B are $(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$

- Outcomes of rolling two dice: $(1,1),(1,2), \ldots .,(6,5),(6,6)$
- As discussed, $P(A)=\frac{9}{36}=\frac{1}{4}$
- However, once B occurs, instead of 36 outcomes, we now have... 6 outcomes.

Examples

- What is the probability of A given B ?
- Outcomes of A are (1, 3), $(2,2),(3,1),(2,6),(3,5),(4,4),(5,3),(6,2),(6,6)$

Outcomes of B are $(3,1),(3,2),(3,3),(3,4),(3,5), i 3,6)$

- Outcomes of rolling two dice: $(1,1),(1,2), \ldots .,(6,5),(6,6)$
- As discussed, $P(A)=\frac{9}{36}=\frac{1}{4}$
- However, once B occurs, instead of 36 outcomes, we now have... 6 outcomes.
- Only 2 of them are outcomes that correspond to A.

Examples

- What is the probability of A given B ?
- Outcomes of A are (1, 3), $(2,2),(3,1),(2,6),(3,5),(4,4),(5,3),(6,2),(6,6)$

Outcomes of B are $(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$

- Outcomes of rolling two dice: $(1,1),(1,2), \ldots .,(6,5),(6,6)$
- As discussed, $P(A)=\frac{9}{36}=\frac{1}{4}$
- However, once B occurs, instead of 36 outcomes, we now have... 6 outcomes.
- Only 2 of them are outcomes that correspond to A.
- Therefore, the probability of A given B is $\frac{2}{6}=\frac{1}{3}$

Examples

- We once again two roll dice
- Event $A=$ "Sum of the dice is ≥ 8 "
- Event $\mathrm{B}=$ " First die is 4"

Examples

- We once again two roll dice
- Event $A=$ "Sum of the dice is ≥ 8 "
- Event $\mathrm{B}=$ " First die is $4 "$
- If B happens, what is your intuition about the probability of A ?

Examples

- We once again two roll dice
- Event $A=$ "Sum of the dice is ≥ 8 "
- Event $\mathrm{B}=$ " First die is $4 "$
- If B happens, what is your intuition about the probability of A ?
Stay the
same
same science

Examples

- We once again two roll dice
- Event $A=$ "Sum of the dice is ≥ 8 "
- Event $\mathrm{B}=$ " First die is $4 "$
- If B happens, what is your intuition about the probability of A ?

Go up Go down \begin{tabular}{|c|c|}
\hline Stay the

same

Unknown to

science
\end{tabular}

Let's see if
your
intuition
was correct!

Examples

- We once again two roll dice
- Event $\mathrm{A}=$ "Sum of the dice is $\geq 8^{\prime \prime} P(A)=$? (work on it)
- Event $\mathrm{B}=$ " First die is $4 "$

Examples

- We once again two roll dice
- Event $\mathrm{A}=$ "Sum of the dice is ≥ 8 " $P(A)=\frac{15}{36}=\frac{5}{12}$
- Event $\mathrm{B}=$ "First die is a 4 "

Examples

- We once again two roll dice
- Event $\mathrm{A}=$ "Sum of the dice is ≥ 8 " $P(A)=\frac{15}{36}=\frac{5}{12}$
- Event $\mathrm{B}=$ "First die is a 4 " $P(B)=\frac{1}{6}$

Examples

- We once again two roll dice
- Event $\mathrm{A}=$ "Sum of the dice is ≥ 8 " $P(A)=\frac{15}{36}=\frac{5}{12}$
- Event $\mathrm{B}=$ "First die is a 4 " $P(B)=\frac{1}{6}$
- Prob of A given $B=$ Prob second dice is 4,5 , or $6=\frac{3}{6}=\frac{1}{2}>\frac{5}{12}$

By just $\frac{1}{12}$...

Conditional Probability

- Let A, B be two events. The conditional probability of A given B , denoted $P(A \mid B)$ is defined as follows:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Re-Thinking Independent Events

- Alternative definition of independent events: Two events A and B will be called marginally independent, or just independent for short, if and only if

$$
P(A \mid B)=P(A)
$$

Re-Thinking Independent Events

- Alternative definition of independent events: Two events A and B will be called marginally independent, or just independent for short, if and only if

$$
P(A \mid B)=P(A)
$$

- Applying the definition of $P(A \mid B)$ we have:
- $\frac{P(A \cap B)}{P(B)}=P(A) \Rightarrow P(A \cap B)=P(A) \cdot P(B)$, which is a relationship we had reached earlier when discussing the joint probability.

Complex Probabilities

- Suppose that I have two dice: a six-sided one and a ten-sided one.
- I pick either one of them with probability $\frac{1}{2}$

Complex Probabilities

- Suppose that I have two dice: a six-sided one and a ten-sided one.
- I pick either one of them with probability $\frac{1}{2}$ and roll it.
- What's the probability that the die comes up 6? (work on this yourselves NOW)

Complex Probabilities

- Suppose that I have two dice: a six-sided one and a ten-sided one.
- I pick either one of them with probability $\frac{1}{2}$
- What's the probability that the die comes up 6? (work on this yourselves NOW)

$$
\begin{gathered}
P(\text { Roll }=6)=P(\text { Roll }=6, \text { Die }=6)+P(\text { Roll }=6, \text { Die }=10)= \\
=P(\text { Roll }=6 \mid \text { Die }=6) \times P(\text { Die }=6)+P(\text { Roll }=6 \mid \text { Die }=10) \times P(\text { Die }=10) \\
= \\
=\frac{1}{6} \times \frac{1}{2}+\frac{1}{10} \times \frac{1}{2}=\frac{1}{12}+\frac{1}{20}=\frac{2}{15} \approx 0.1333 \ldots
\end{gathered}
$$

Complex Probabilities

- Suppose that I have two dice: a six-sided one and a ten-sided one.
- Now we change the problem so that we pick the ten-sided die with prob $\frac{5}{9}$ and the six-sided die with prob $\frac{4}{9}$.
- Intuitively, will the probability that I come up with a 6...

Complex Probabilities

- Suppose that I have two dice: a six-sided one and a ten-sided one.
- Now we change the problem so that we pick the ten-sided die with prob $\frac{5}{9}$ and the six-sided die with prob $\frac{4}{9}$.
- Intuitively, will the probability that I come up with a 6...

Complex Probabilities

- Suppose that I have two dice: a six-sided one and a ten-sided one.
- Now we change the problem so that we pick the ten-sided die with prob $\frac{5}{9}$ and the six-sided die with prob $\frac{4}{9}$.
- Intuitively, will the probability that I come up with a 6...

Complex Probabilities

- Suppose that I have two dice: a six-sided one and a ten-sided one.
- Now we change the problem so that we pick the ten-sided die with prob $\frac{5}{9}$ and the six-sided die with prob $\frac{4}{9}$.
- What's the probability that I come up with a 6 ?

$$
\begin{gathered}
P(\text { Roll }=6)=P(\text { Roll }=6, \text { Die }=6)+P(\text { Roll }=6, \text { Die }=10)= \\
=P(\text { Roll }=6 \mid \text { Die }=6) \times P(\text { Die }=6)+P(\text { Roll }=6, \text { Die }=10) \times P(\text { Die }=10)= \\
=\frac{1}{6} \times \frac{4}{9}+\frac{1}{10} \times \frac{5}{9}=\frac{2}{27}+\frac{1}{18}=\frac{7}{54} \approx 0.130<0.133
\end{gathered}
$$

Bayes' Law

- Suppose A and B are events in a sample space Ω. Then, the following is an identity:

$$
P(A \mid B)=P(B \mid A) \frac{P(A)}{P(B)}
$$

known as Bayes' Law

Questions

- If $P(A \mid B)=P(A)$, is it the case that $P(B \mid A)=P(B)$?

Questions

- If $P(A \mid B)=P(A)$, is it the case that $P(B \mid A)=P(B)$?

- Substituting $P(A \mid B)$ with $P(A)$ in the formulation of Bayes' Law, we have:

$$
P(A)=P(B \mid A) \cdot \frac{P(A)}{P(B)} \Rightarrow 1=\frac{P(B \mid A)}{P(B)} \Rightarrow P(B \mid A)=P(B)
$$

Questions

- If $P(A \mid B)=P(A)$, is it the case that $P(B \mid A)=P(B)$?

- Substituting $P(A \mid B)$ with $P(A)$ in the formulation of Bayes' Law, we have:

$$
P(A)=P(B \mid A) \cdot \frac{P(A)}{P(B)} \Rightarrow 1=\frac{P(B \mid A)}{P(B)} \Rightarrow P(B \mid A)=P(B)
$$

Questions

- If $P(B)=0$, then is $P(A \mid B)$ also 0 ?

Questions

- If $P(B)=0$, then is $P(A \mid B)$ also 0 ?

- It is undefined, since $P(A \mid B)=P(B \mid A) \cdot \frac{P(A)}{P(B)}$

STOP

RECORDING

