How to Write Proofs

250H

What is the point of a proof?

- Prove that a statement is true clearly and without ambiguity

Types of Proofs

- Direct

\circ	$p \rightarrow q$
\circ	Assume p
\circ	Show q

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

Types of Proofs

- Direct
- $p \rightarrow q$
- Assume p
- Show q
- Contradiction
- $p \rightarrow \neg q$
- Assume p and $\neg q$
- Show something goes wrong

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

Types of Proofs

- Direct
- $p \rightarrow q$
- Assume p
- Show q
- Contradiction
- $p \rightarrow \neg q$
- Assume p and $\neg q$
- Show something goes wrong
- Contrapositive

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

- $\neg q \rightarrow \neg p$
- Assume $\neg \mathrm{q}$
- Show ᄀp

Tips on how to start a proof

- What do we know
- What do we want to show
- What definitions might we need
- What type of proof are we going to use

Example: Let $n \in Z$. Prove that if n^{2} is even, then n is even.

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

- What do we know

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

- What do we know
- n is in the integers
- n^{2} is even

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

- What do we know
- n is in the integers
- n^{2} is even
- What do we want to show

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

- What do we know
- n is in the integers
- n^{2} is even
- What do we want to show
- n is even

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

- What do we know
- n is in the integers
- n^{2} is even
- What do we want to show
- n is even
- What definitions might we need

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

- What do we know
- n is in the integers
- n^{2} is even
- What do we want to show
- n is even
- What definitions might we need
- Def of even: n is even if $\mathrm{n}=2 \mathrm{k}$ where k is an integer
- Def of odd: n is odd if $n=2 k+1$ where k is an integer

Example: Let $n \in Z$. Prove that if n^{2} is even, then n is even.

- What do we know
- n is in the integers
- n^{2} is even
- What do we want to show
- n is even
- What definitions might we need
- Def of even: n is even if $n=2 k$ where k is an integer
- Def of odd: n is odd if $\mathrm{n}=2 \mathrm{k}+1$ where k is an integer
- What type of proof are we going to use

Example: Let $n \in Z$. Prove that if n^{2} is even, then n is even.

- What do we know
- n is in the integers
- n^{2} is even
- What do we want to show
- n is even
- What definitions might we need
- Def of even: n is even if $n=2 k$ where k is an integer
- Def of odd: n is odd if $n=2 k+1$ where k is an integer
- What type of proof are we going to use
- Direct? No
- Contradiction? Possibly
- Contrapositive? Possibly

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

Proof:

- Tell me what you have:
- Let $\mathrm{n} \in \mathrm{Z}$.
- For the sake of contradiction, assume n^{2} is even and n is odd.

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

Proof:

- Tell me what you have:
- Let $\mathrm{n} \in \mathrm{Z}$.
- For the sake of contradiction, assume n^{2} is even and n is odd.
- Use Definitions:
- If n is odd then $\mathrm{n}=2 \mathrm{k}+1$ where k is an integer by the definition of an odd number.

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

Proof:

- Tell me what you have:
- Let $\mathrm{n} \in \mathrm{Z}$.
- For the sake of contradiction, assume n^{2} is even and n is odd.
- Use Definitions:
- If n is odd then $n=2 k+1$ where k is an integer by the definition of an odd number.
- Do the algebra:
- Then, $\mathrm{n}^{2}=(2 \mathrm{k}+1)^{2}=4 \mathrm{k}^{2}+4 \mathrm{k}+1=2\left(2 \mathrm{k}^{2}+2 \mathrm{k}\right)+1$.

Example: Let $n \in Z$. Prove that if n^{2} is even, then n is even.

Proof:

- Tell me what you have:
- Let $\mathrm{n} \in \mathrm{Z}$.
- For the sake of contradiction, assume n^{2} is even and n is odd.
- Use Definitions:
- If n is odd then $n=2 k+1$ where k is an integer by the definition of an odd number.
- Do the algebra:
- Then, $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$.
- Spell out the contradiction:
- Hence, we have a contradiction as $2\left(2 k^{2}+2 k\right)+1$ is odd since $2 k^{2}+2 k$ is an integer.

Example: Let $n \in Z$. Prove that if n^{2} is even, then n is even.

Proof:

- Tell me what you have:
- Let $n \in Z$.
- For the sake of contradiction, assume n^{2} is even and n is odd.
- Use Definitions:
- If n is odd then $n=2 k+1$ where k is an integer by the definition of an odd number.
- Do the algebra:
- Then, $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$.
- Spell out the contradiction:
- Hence, we have a contradiction as $2\left(2 k^{2}+2 k\right)+1$ is odd since $2 k^{2}+2 k$ is an integer.
- Finish it:
- Thus, if n^{2} is even, then n is even.

Example: Let $n \in Z$. Prove that if n^{2} is even, then n is even.

Proof:

Let $n \in Z$. For the sake of contradiction, assume n^{2} is even and n is odd. If n is odd then $n=2 k+1$ where k is an integer by the definition of an odd number. Then,

$$
\begin{aligned}
& n^{2}=(2 k+1)^{2} \\
= & 4 k^{2}+4 k+1 \\
= & 2\left(2 k^{2}+2 k\right)+1 .
\end{aligned}
$$

Hence we have a contradiction as $2\left(2 k^{2}+2 k\right)+1$ is odd since $2 k^{2}+2 k$ is an integer. Thus, if n^{2} is even, then n is even. D

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

Proof:

- Tell me what you have:
- Let $n \in Z$.
- Assume by contrapositive that n is odd.

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

Proof:

- Tell me what you have:
- Let $\mathrm{n} \in \mathrm{Z}$.
- Assume by contrapositive that n is odd.
- Use Definitions:
- If n is odd then $\mathrm{n}=2 \mathrm{k}+1$ where k is an integer by the definition of an odd number.

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

Proof:

- Tell me what you have:
- Let $\mathrm{n} \in \mathrm{Z}$.
- Assume by contrapositive that n is odd.
- Use Definitions:
- If n is odd then $\mathrm{n}=2 \mathrm{k}+1$ where k is an integer by the definition of an odd number.
- Do the algebra:
- Then, $\mathrm{n}^{2}=(2 \mathrm{k}+1)^{2}=4 \mathrm{k}^{2}+4 \mathrm{k}+1=2\left(2 \mathrm{k}^{2}+2 \mathrm{k}\right)+1$.

Example: Let $n \in Z$. Prove that if n^{2} is even, then n is even.

Proof:

- Tell me what you have:
- Let $\mathrm{n} \in \mathrm{Z}$.
- Assume by contrapositive that n is odd.
- Use Definitions:
- If n is odd then $n=2 k+1$ where k is an integer by the definition of an odd number.
- Do the algebra:
- Then, $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$.
- Spell out your result:
- Hence $2\left(2 k^{2}+2 k\right)+1$ is odd since $2 k^{2}+2 k$ is an integer.

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

Proof:

- Tell me what you have:
- Let $n \in Z$.
- Assume by contrapositive that n is odd.
- Use Definitions:
- If n is odd then $\mathrm{n}=2 \mathrm{k}+1$ where k is an integer by the definition of an odd number.
- Do the algebra:
- Then, $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$.
- Spell out your result:
- Hence $2\left(2 k^{2}+2 k\right)+1$ is odd since $2 k^{2}+2 k$ is an integer.
- Finish it:
- So, if n is odd, then n^{2} is odd.
- Thus, if n^{2} is even, then n is even.

Example: Let $n \in Z$. Prove that if n^{2} is even, then n is even.

Proof:

Let $n \in Z$. Assume by way of contrapositive that n is odd.If n is odd then $n=2 k+1$ where k is an integer by the definition of an odd number. Then,

$$
\begin{aligned}
& n^{2}=(2 k+1)^{2} \\
= & 4 k^{2}+4 k+1 \\
= & 2\left(2 k^{2}+2 k\right)+1 .
\end{aligned}
$$

Hence, $2\left(2 k^{2}+2 k\right)+1$ is odd since $2 k^{2}+2 k$ is an integer. So, if n is odd, then n^{2} is odd. Thus, if n^{2} is even, then n is even. D

Tips

- Do not assume your reader knows all definitions
- Do not assume your reader sees what you see
- It is clear that blah blah blah
- No it is not
- Do not make things complicated for your reader. It does not make you look more intelligent.

