How to Write Proofs

250H

What is the point of a proof?

Prove that a statement is true clearly and without ambiguity

Types of Proofs

Direct

- o p → q
- o Assume p
- o Show q

р	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Types of Proofs

Direct

- \circ p \rightarrow q
- Assume p
- Show q

Contradiction

- \circ p $\rightarrow \neg q$
- Assume p and ¬q
- Show something goes wrong

р	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Types of Proofs

Direct

- o p **→** q
- Assume p
- Show q

Contradiction

- o p → ¬q
- Assume p and ¬q
- Show something goes wrong

Contrapositive

- ¬q →¬p
- Assume ¬q
- Show ¬p

р	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Tips on how to start a proof

- What do we know
- What do we want to show
- What definitions might we need
- What type of proof are we going to use

What do we know

- What do we know
 - o n is in the integers
 - \circ n² is even

- What do we know
 - o n is in the integers
 - o n² is even
- What do we want to show

- What do we know
 - o n is in the integers
 - \circ n² is even
- What do we want to show
 - o n is even

- What do we know
 - o n is in the integers
 - \circ n² is even
- What do we want to show
 - o n is even
- What definitions might we need

- What do we know
 - o n is in the integers
 - \circ n² is even
- What do we want to show
 - o n is even
- What definitions might we need
 - \circ Def of even: n is even if n = 2k where k is an integer
 - \circ Def of odd: n is odd if n = 2k + 1 where k is an integer

- What do we know
 - o n is in the integers
 - \circ n^2 is even
- What do we want to show
 - o n is even
- What definitions might we need
 - Def of even: n is even if n = 2k where k is an integer
 - \circ Def of odd: n is odd if n = 2k + 1 where k is an integer
- What type of proof are we going to use

- What do we know
 - o n is in the integers
 - o n² is even
- What do we want to show
 - o n is even
- What definitions might we need
 - Def of even: n is even if n = 2k where k is an integer
 - \circ Def of odd: n is odd if n = 2k+1 where k is an integer
- What type of proof are we going to use
 - Direct? No
 - Contradiction? Possibly
 - Contrapositive? Possibly

- Tell me what you have:
 - o Let n∈Z.
 - \circ For the sake of contradiction, assume n^2 is even and n is odd.

- Tell me what you have:
 - o Let n∈Z.
 - \circ For the sake of contradiction, assume n^2 is even and n is odd.
- Use Definitions:
 - \circ If n is odd then n = 2k + 1 where k is an integer by the definition of an odd number.

- Tell me what you have:
 - o Let n∈Z.
 - \circ For the sake of contradiction, assume n^2 is even and n is odd.
- Use Definitions:
 - \circ If n is odd then n = 2k + 1 where k is an integer by the definition of an odd number.
- Do the algebra:
 - Then, $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$.

- Tell me what you have:
 - o Let n∈Z.
 - For the sake of contradiction, assume n² is even and n is odd.
- Use Definitions:
 - \circ If n is odd then n = 2k + 1 where k is an integer by the definition of an odd number.
- Do the algebra:
 - O Then, $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$.
- Spell out the contradiction:
 - Hence, we have a contradiction as $2(2k^2 + 2k) + 1$ is odd since $2k^2 + 2k$ is an integer.

- Tell me what you have:
 - o Let n∈Z.
 - \circ For the sake of contradiction, assume n^2 is even and n is odd.
- Use Definitions:
 - \circ If n is odd then n = 2k + 1 where k is an integer by the definition of an odd number.
- Do the algebra:
 - O Then, $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$.
- Spell out the contradiction:
 - Hence, we have a contradiction as $2(2k^2 + 2k) + 1$ is odd since $2k^2 + 2k$ is an integer.
- Finish it:
 - \circ Thus, if n^2 is even, then n is even.

Proof:

Let $n \in \mathbb{Z}$. For the sake of contradiction, assume n^2 is even and n is odd. If n is odd then n = 2k+1 where k is an integer by the definition of an odd number. Then,

$$n^{2} = (2k+1)^{2}$$
$$= 4k^{2} + 4k + 1$$
$$= 2(2k^{2} + 2k) + 1.$$

Hence we have a contradiction as $2(2k^2 + 2k) + 1$ is odd since $2k^2 + 2k$ is an integer. Thus, if n^2 is even, then n is even. \mathfrak{I}

- Tell me what you have:
 - o Let n∈Z.
 - Assume by contrapositive that n is odd.

- Tell me what you have:
 - o Let n∈Z.
 - Assume by contrapositive that n is odd.
- Use Definitions:
 - \circ If n is odd then n = 2k + 1 where k is an integer by the definition of an odd number.

- Tell me what you have:
 - o Let n∈Z.
 - Assume by contrapositive that n is odd.
- Use Definitions:
 - \circ If n is odd then n = 2k + 1 where k is an integer by the definition of an odd number.
- Do the algebra:
 - O Then, $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$.

- Tell me what you have:
 - o Let n∈Z.
 - Assume by contrapositive that n is odd.
- Use Definitions:
 - \circ If n is odd then n = 2k + 1 where k is an integer by the definition of an odd number.
- Do the algebra:
 - O Then, $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$.
- Spell out your result:
 - Hence $2(2k^2 + 2k) + 1$ is odd since $2k^2 + 2k$ is an integer.

- Tell me what you have:
 - o Let n∈Z.
 - Assume by contrapositive that n is odd.
- Use Definitions:
 - \circ If n is odd then n = 2k + 1 where k is an integer by the definition of an odd number.
- Do the algebra:
 - O Then, $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$.
- Spell out your result:
 - Hence $2(2k^2 + 2k) + 1$ is odd since $2k^2 + 2k$ is an integer.
- Finish it:
 - \circ So, if n is odd, then n^2 is odd.
 - \circ Thus, if n^2 is even, then n is even.

Proof:

Let $n \in \mathbb{Z}$. Assume by way of contrapositive that n is odd. If n is odd then n = 2k+1 where k is an integer by the definition of an odd number. Then,

$$n^{2} = (2k+1)^{2}$$
$$= 4k^{2} + 4k + 1$$
$$= 2(2k^{2} + 2k) + 1.$$

Hence, $2(2k^2 + 2k) + 1$ is odd since $2k^2 + 2k$ is an integer. So, if n is odd, then n^2 is odd. Thus, if n^2 is even, then n is even. \mathfrak{I}

Tips

- Do not assume your reader knows all definitions
- Do not assume your reader sees what you see
 - It is clear that blah blah
 - No it is not
- Do not make things complicated for your reader. It does not make you look more intelligent.