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Techniques of proof

Proving universal / Existential statements true or false
Direct and indirect proof strategies



Basic definitions:Parity

• An integer 𝑛𝑛 is called even if, and only if, there exists an integer 𝑘𝑘
such that 𝑛𝑛 = 2𝑘𝑘.

• An integer 𝑛𝑛 is called odd if, and only if, it is not even.
• Corollary: An integer 𝑛𝑛 is called odd if, and only if, there exists an 

integer 𝑘𝑘 such that 𝑛𝑛 = 2𝑘𝑘 + 1
• The property of an integer as being either odd or even is known as its 

parity.
• 𝑛𝑛 is odd if, and only if, 𝑛𝑛 ≡ 1 (𝑚𝑚𝑚𝑚𝑚𝑚 2) (resp, even, iff 𝑛𝑛 ≡ 0 (𝑚𝑚𝑚𝑚𝑚𝑚 2))



Arguing the positive: Universal Statements

• Let’s consider the following statement:

“The sum of an odd and an even integer is odd.”
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• Let’s consider the following statement:
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• Do you believe this statement? Yes No



Arguing the positive: Universal Statements

• Let’s consider the following statement:

“The sum of an odd and an even integer is odd.”

• Do you believe this statement?

• If you believe it, you have to try to prove that it’s true (argue the 
positive/affirmative)

Yes No



Proof

• Let 𝑥𝑥 be even, then 𝑥𝑥 ≡ 0 (𝑚𝑚𝑚𝑚𝑚𝑚 2)
• Let 𝑦𝑦 be odd, then 𝑦𝑦 ≡ 1 (𝑚𝑚𝑚𝑚𝑚𝑚 2)
• Consequently, 𝑥𝑥 + 𝑦𝑦 ≡ 0 + 1 ≡ 1 (𝑚𝑚𝑚𝑚𝑚𝑚 2)



• Mathematical claims and theorems can be stated in various different ways!

Statements of claims / theorems

“The sum of an odd and an even integer is odd.”

“Any two integers of opposite parity sum to an odd number”

“Every pair of integers of opposite parity sums to an odd number”

∀𝑛𝑛1 ∈ ℤ2𝑘𝑘+1 ∀𝑛𝑛2 ∈ ℤ2𝑘𝑘 𝑛𝑛1 + 𝑛𝑛2 ∈ 𝑍𝑍2𝑘𝑘+1



Here’s some more!

• Let’s prove the following claims true:

1. The square of an odd integer is also odd.



Here’s some more!

• Let’s prove the following claims true:

1. The square of an odd integer is also odd.
2. If 𝑎𝑎 is an integer, then 𝑎𝑎2 + 𝑎𝑎 is even. 



Here’s some more!

• Let’s prove the following claims true:

1. The square of an odd integer is also odd.
2. If 𝑎𝑎 is an integer, then 𝑎𝑎2 + 𝑎𝑎 is even. 
3. If m is an even integer and n is an odd integer, 𝑚𝑚2 + 3𝑛𝑛 is odd. 



Here’s some more!

• Let’s prove the following claims true:

1. The square of an odd integer is also odd.
2. If 𝑎𝑎 is an integer, then 𝑎𝑎2 + 𝑎𝑎 is even. 
3. If m is an even integer and n is an odd integer, 𝑚𝑚2 + 3𝑛𝑛 is odd. 
4. If n is odd, 𝑛𝑛2 = 8𝑚𝑚 + 1 for some integer 𝑚𝑚.



Here’s some more!

• Let’s prove the following claims true:

1. The square of an odd integer is also odd.
2. If 𝑎𝑎 is an integer, then 𝑎𝑎2 + 𝑎𝑎 is even. 
3. If m is an even integer and n is an odd integer, 𝑚𝑚2 + 3𝑛𝑛 is odd. 
4. If n is odd, 𝑛𝑛2 = 8𝑚𝑚 + 1 for some integer 𝑚𝑚.

5. If 𝑎𝑎, 𝑏𝑏 are rationals, �(𝑎𝑎+𝑏𝑏)
2 is also rational



Arguing the negative: counter-example

• Since
∼ ∀𝑥𝑥 ∈ 𝐷𝐷 𝑃𝑃 𝑥𝑥 ≡ (∃𝑥𝑥 ∈ 𝐷𝐷)[~𝑃𝑃 𝑥𝑥 ]

• 𝑥𝑥 is referred to as a counter-example.

• Examples: 
a) All primes are odd. 



Arguing the negative: counter-example

• Since
∼ ∀𝑥𝑥 ∈ 𝐷𝐷 𝑃𝑃 𝑥𝑥 ≡ (∃𝑥𝑥 ∈ 𝐷𝐷)[~𝑃𝑃 𝑥𝑥 ]

• 𝑥𝑥 is referred to as a counter-example.

• Examples: 
a) All primes are odd. Disproof by counter-example: 

1. All primes are odd.
Counter-example: 2 is prime but also even.



Arguing the negative: counter-example

• Since
∼ ∀𝑥𝑥 ∈ 𝐷𝐷 𝑃𝑃 𝑥𝑥 ≡ (∃𝑥𝑥 ∈ 𝐷𝐷)[~𝑃𝑃 𝑥𝑥 ]

• 𝑥𝑥 is referred to as a counter-example.

• Examples: 
b) The tenths and units digits of all perfect squares 16 and above have an absolute 

difference bigger than 1.



Arguing the negative: counter-example

• Since
∼ ∀𝑥𝑥 ∈ 𝐷𝐷 𝑃𝑃 𝑥𝑥 ≡ (∃𝑥𝑥 ∈ 𝐷𝐷)[~𝑃𝑃 𝑥𝑥 ]

• 𝑥𝑥 is referred to as a counter-example.
• Examples: 

b) The tens and ones digits of all perfect squares 16 and above have an absolute 
difference bigger than 1. Disproof by counterexample:
1. 100 is a perfect square ≥ 16, since 100 = 10 ∈ ℤ.
2. The ones and tenths digits of 100 are 0. 
3. 0 – 0 = 0 < 1.
4. By (1), (2), (3), we have that 100 is a counter-example.
5. Therefore, the statement is false. Done.



Perfect Squares

• Consider perfect square 16 or greater whose units and tenths digits have an 
absolute difference of less than 4.

n n2 |Ten - Unit|
4 16 5
5 25 3
6 36 3



Perfect Squares

• ∀𝑥𝑥 ≥ 4 [𝑥𝑥2 has a difference of tens and units be < 4]



Perfect Squares

• ∀𝑥𝑥 ≥ 4 [𝑥𝑥2 has diff of tens and units be < 4]
• False!

• Counterexample: 42



Perfect Squares

• ∀𝑥𝑥 ≥ 4 [𝑥𝑥2 has diff of tens and units be < 4]
• False!

• Counterexample: 42

• ∀𝑥𝑥 ≥ 5 [𝑥𝑥2 has diff of tens and units be < 4]



Perfect Squares

• ∀𝑥𝑥 ≥ 5 [𝑥𝑥2 has diff of tens and units be < 4]

n n2 |Ten - Unit|

26 676 1
27 729 7
28 784 4
29 841 3
30 900 0

n n2 |Ten - Unit|

20 400 0
21 441 3
22 484 4
23 529 7
24 576 1
25 625 3



Perfect Squares

• ∀𝑥𝑥 ≥ 5 [𝑥𝑥2 has diff of tens and units be < 4]
• False!

• Counterexample: 222



Perfect Squares

• ∀𝑥𝑥 ≥ 5 [𝑥𝑥2 has diff of tens and units be < 4]
• False!

• Counterexample: 222

• ∀𝑥𝑥 ≥ 29 [𝑥𝑥2 has diff of tens and units be < 4]



Perfect Squares

• ∀𝑥𝑥 ≥ 5 [𝑥𝑥2 has diff of tens and units be < 4]
• False!

• Counterexample: 222

• ∀𝑥𝑥 ≥ 29 𝑥𝑥2 has diff of tens and units be < 4
• Don’t know. On a HW will ask you to write a program to see what happens up to 

1000.



Arguing the affirmative of existential
statements

• Two methods:
1. Constructive
2. Non-Constructive

• In “constructive” proofs we either explicitly show or construct an 
element of the domain that answers our query.

• In non-constructive proofs (very rare in this class) we prove that it is a 
logical necessity for such an element to exist!

• But we neither explicitly, nor implicitly, show or construct such an element!



Constructive proofs in Number 
Theory (and one non-

constructive one)



Our first constructive proof

• Claim: There exists a natural number that you cannot write as a sum 
of three squares of natural numbers.

• Examples of numbers you can write as a sum of three squares: 
• 0 = 02 + 02 + 02

• 1 = 12 + 02 + 02

• 2 = 12 + 12 + 02

• Try to find a number that cannot be written as such.



Proof

• The natural number 7 cannot be written as the sum of three squares.
• This we can prove by case analysis:

1. Can’t use 3, since 32 = 9 > 7
2. Can’t use 2 more than once, since 22 + 22 = 8 > 7
3. So, we can use 2, one or zero times.

a) If we use 2 once, we have 7 = 22 + 𝑎𝑎2 + 𝑏𝑏2 ≤ 22 + 12 + 12 = 6 < 7
b) If we use 2 zero times, the maximum value is 12 + 12 + 12 = 3 < 7

4. Done!



Sum of Three Squares

• In Breakout Rooms, Find:
• Other numbers that are NOT the sum of 3 squares
• Try to prove there are an INFINITE number of numbers that are NOT the sum 

of 3 squares



Sum of Three Squares

• If 𝑛𝑛 ≡ 7 (𝑚𝑚𝑚𝑚𝑚𝑚 8), then 𝑛𝑛 CANNOT be written as the sum of 3 squares

Mod 8

02 ≡ 0 42 ≡ 0
12 ≡ 1 52 ≡ 1
22 ≡ 4 62 ≡ 4
32 ≡ 1 72 ≡ 1



Sum of Three Squares

So, is there some way for three numbers from 0, 1, 4 to add up to 7(𝑚𝑚𝑚𝑚𝑚𝑚 8)?

Case 1: Use zero 4’s. Then max is 1+1+1≡3 < 7.

Case 2: Use exactly one 4. Then we have to get 3 with two of {0,1}, but the 
max is 1+1 ≡ 2 < 4.

Case 3: Use two 4’s 4+4+0=1, 4+4+1 ≡ 2.

Case 4: Use three 4’s 4+4+4 ≡ 4. 



Your turn, class!

• Let’s break into breakout rooms and prove the following theorems:

1. There exists an integer 𝑛𝑛 that can be written in two ways (i.e at 
least one of the two summands is different) as a sum of two prime 
numbers.

2. There is a perfect square that can be written as a sum of two other 
perfect squares.

3. Suppose 𝑟𝑟, 𝑠𝑠 ∈ ℤ. Then, (∃𝑘𝑘 ∈ ℤ)[ 22𝑟𝑟 + 18𝑠𝑠 = 2𝑘𝑘]



Your turn, class!

• Let’s split in teams and prove the following theorems:

1. There exists an integer 𝑛𝑛 that can be written in two ways (i.e at 
least one of the two summands is different) as a sum of two prime 
numbers.

2. There is a perfect square that can be written as a sum of two other 
perfect squares.

3. Suppose 𝑟𝑟, 𝑠𝑠 ∈ ℤ. Then, (∃𝑘𝑘 ∈ ℤ)[ 22𝑟𝑟 + 18𝑠𝑠 = 2𝑘𝑘]

How is the 3rd proof different from the others?



Our first non-constructive proof

• Theorem: There exists a pair of irrational numbers 𝑎𝑎 and 𝑏𝑏 such that 
𝑎𝑎𝑏𝑏 is a rational number.



Our first non-constructive proof

• For the following proof, we will assume known that 2 ∉ ℚ.
• This is a fact, which we will prove later on in this section.
• Now, on to the proof!



Our first non-constructive proof

• Theorem: There exists a pair of irrational numbers 𝑎𝑎 and 𝑏𝑏 such that 
𝑎𝑎𝑏𝑏 is a rational number.



Our first non-constructive proof

• Theorem: There exists a pair of irrational numbers 𝑎𝑎 and 𝑏𝑏 such that 
𝑎𝑎𝑏𝑏 is a rational number.

• Proof: Let 𝑎𝑎 = 𝑏𝑏 = 2. Since 2 is irrational, 𝑎𝑎 and 𝑏𝑏 are both 
irrational. Is 𝑎𝑎𝑏𝑏 = ( 2) 2 rational? Two cases:



Our first non-constructive proof

• Theorem: There exists a pair of irrational numbers 𝑎𝑎 and 𝑏𝑏 such that 
𝑎𝑎𝑏𝑏 is a rational number.

• Proof: Let 𝑎𝑎 = 𝑏𝑏 = 2. Since 2 is irrational, 𝑎𝑎 and 𝑏𝑏 are both 
irrational. Is 𝑎𝑎𝑏𝑏 = ( 2) 2 rational? Two cases:

1. If 2
2

is rational, then we have proven the result. Done.



Our first non-constructive proof

• Theorem: There exists a pair of irrational numbers 𝑎𝑎 and 𝑏𝑏 such that 
𝑎𝑎𝑏𝑏 is a rational number.

• Proof: Let 𝑎𝑎 = 𝑏𝑏 = 2. Since 2 is irrational, 𝑎𝑎 and 𝑏𝑏 are both 
irrational. Is 𝑎𝑎𝑏𝑏 = ( 2) 2 rational? Two cases:

1. If 2
2

is rational, then we have proven the result. Done.

2. If 2
2

is irrational, then we will name it 𝑐𝑐. Then, observe that 𝑐𝑐 2 is 

rational, since 𝑐𝑐 2 = 2
2

2

= 2
2

= 2 ∈ ℚ. Since both 𝑐𝑐 and 2

are irrationals, but 𝑐𝑐 2 is rational, we are done.    



Analysis of proof

• Suppose 𝑥𝑥 = 2, an irrational. From the previous theorem, we know:
a) Either that 𝑎𝑎 = 𝑥𝑥, 𝑏𝑏 = 𝑥𝑥 are two irrationals that satisfy the condition , OR
b) That 𝑎𝑎 = 𝑥𝑥𝑥𝑥 , 𝑏𝑏 = 𝑥𝑥 are the two irrationals.

• But we don’t care which pair it is! As long as one exists!



Indirect Proofs of Number Theory

• Sometimes, proving a fact directly is tough.
• In such cases, we can attempt an indirect proof
• Those are split in two categories:

1. Proofs by contraposition
2. Proofs by contradiction

• We will see examples of both.



Proof by contraposition

• Applicable to all kinds of statements of type:

∀𝑥𝑥 ∈ 𝐷𝐷 [𝑃𝑃 𝑥𝑥 ⇒ 𝑄𝑄 𝑥𝑥 ]

• Sometimes, proving the implication in this way can be hard.
• On the other hand, proving its contrapositive:

∀𝑥𝑥 ∈ 𝐷𝐷 [ ∼ 𝑄𝑄 𝑥𝑥 ⇒∼ 𝑃𝑃 𝑥𝑥 ]

might be easier! 



Examples

• ∀𝑎𝑎 ∈ ℤ (𝑎𝑎2 𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛) ⇒ (𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛)



Examples

• ∀𝑎𝑎 ∈ ℤ (𝑎𝑎2 𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛) ⇒ (𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛)
• Do we believe this to be true?

Yes No



Examples

• ∀𝑎𝑎 ∈ ℤ (𝑎𝑎2 𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛) ⇒ (𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛)
• Do we believe this to be true?

• So we should aim for a proof of the affirmative!

Yes No



Examples

• ∀𝑎𝑎 ∈ ℤ (𝑎𝑎2 𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛) ⇒ (𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛)
• Proving this directly is somewhat hard
• On the other hand, the contrapositive:

∀𝑎𝑎 ∈ ℤ [ 𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚 ⇒ (𝑎𝑎2 𝑚𝑚𝑚𝑚𝑚𝑚 )]

is much easier!



Proof that  ∀𝑎𝑎 ∈ ℤ [ 𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚 ⇒ (𝑎𝑎2 𝑚𝑚𝑚𝑚𝑚𝑚 )]

1. Suppose a is an odd integer.
2. Then, 𝑎𝑎 ≡ 1 (𝑚𝑚𝑚𝑚𝑚𝑚 2).
3. By algebra, 𝑎𝑎2 ≡ 12 ≡ 1 (𝑚𝑚𝑚𝑚𝑚𝑚 2). 
4. Done.



Another example

If 3𝑛𝑛 + 2 is odd, where 𝑛𝑛 ∈ ℤ, then 𝑛𝑛 is odd.



Another example

If 3𝑛𝑛 + 2 is odd, where 𝑛𝑛 ∈ ℤ, then 𝑛𝑛 is odd.

Let’s try this one together.



Another example

If 𝑛𝑛 = 𝑎𝑎 ⋅ 𝑏𝑏, where 𝑎𝑎, 𝑏𝑏 ∈ ℕ≥1, then 𝑎𝑎 ≤ 𝑛𝑛 OR 𝑏𝑏 ≤ 𝑛𝑛



Another example

If 𝑛𝑛 = 𝑎𝑎 ⋅ 𝑏𝑏, where 𝑎𝑎, 𝑏𝑏 ∈ ℕ≥1, then 𝑎𝑎 ≤ 𝑛𝑛 OR 𝑏𝑏 ≤ 𝑛𝑛



Proof by contradiction

• The most common type of indirect proof is proof by contradiction
• Briefly: We want to prove a fact 𝑎𝑎, so we assume ∼ 𝒂𝒂 and hope that 

we reach a contradiction (a falsehood).



Proof by contradiction
• The most common type of indirect proof is proof by contradiction
• Briefly: We want to prove a fact 𝑎𝑎, so we assume ∼ 𝒂𝒂 and hope that 

we reach a contradiction (a falsehood).

• ∼ 𝑎𝑎
• Suppose 𝑛𝑛 ∈ ℕ, …
• …

⋮
⋮

This is a so-called 
“conditional 
world”: It’s a 
“version” of our 
world where we 
assume ∼ 𝒂𝒂.



Proof by contradiction
• The most common type of indirect proof is proof by contradiction
• Briefly: We want to prove a fact 𝑎𝑎, so we assume ∼ 𝒂𝒂 and hope that 

we reach a contradiction (a falsehood).

• ∼ 𝑎𝑎
• Suppose 𝑛𝑛 ∈ ℕ, …
• …

⋮
⋮

• But this statement is a 
contradiction, because,… 

We follow some classic 
direct proof sets, and reach 
a statement that is a logical 
contradiction! (e.g 1 > 2)



Proof by contradiction
• The most common type of indirect proof is proof by contradiction
• Briefly: We want to prove a fact 𝑎𝑎, so we assume ∼ 𝒂𝒂 and hope that 

we reach a contradiction (a falsehood).

• ∼ 𝑎𝑎
• Suppose 𝑛𝑛 ∈ ℕ, …
• …

⋮
⋮

• But this statement is a 
contradiction, because,… 

We follow some classic direct 
proof sets, and reach a 
statement that is a logical 
contradiction! (e.g 1 > 2)

This means that this 
conditional world cannot 
possibly exist! The only 
“possible” worlds have 𝒂𝒂 in it.



Proof by contradiction
• The most common type of indirect proof is proof by contradiction
• Briefly: We want to prove a fact 𝑎𝑎, so we assume ∼ 𝒂𝒂 and hope that 

we reach a contradiction (a falsehood).

• ∼ 𝑎𝑎
• Suppose 𝑛𝑛 ∈ ℕ, …
• …

⋮
⋮

• But this statement is a 
contradiction, because,… 

We follow some classic direct 
proof sets, and reach a 
statement that is a logical 
contradiction! (e.g 1 > 2)

This means that this 
conditional world cannot 
possibly exist! The only 
“possible” worlds have 𝒂𝒂 in it.

So worlds where 𝒂𝒂 is 
false cannot possibly 
exist! 𝒂𝒂 must be true!



Proof by contradiction

• Proof of contradiction is often used in statements that look obvious!
• Example: We will prove that there is no greatest integer.



Proof by contradiction

• Proof of contradiction is often used in statements that look obvious!
• Example: We will prove that there is no greatest integer.
• Proof: 

1. Assume that the statement is false. Then, there is a greatest integer. 
2. Call the integer assumed in step 1 𝑁𝑁.
3. By closure of ℤ over addition, we have that 𝑁𝑁 + 1 ∈ ℤ.
4. But 𝑁𝑁 + 1 > 𝑁𝑁.
5. Steps 4 and 1 are a contradiction. Therefore, there does not exist a greatest 

integer.



Your turn!

• Prove that the square root of any irrational is also irrational



A historical proof by contradiction:
2 is irrational



A historical proof by contradiction:
2 is irrational

1. Let’s assume BY WAY OF CONTRADICTION that 2 is rational.



A historical proof by contradiction:
2 is irrational

1. Let’s assume BY WAY OF CONTRADICTION that 2 is rational.

2. So 2 = 𝑎𝑎
𝑏𝑏

, 𝑎𝑎, 𝑏𝑏 ∈ ℤ, 𝑏𝑏 ≠ 0 and 𝑎𝑎, 𝑏𝑏 do not have common factors.



A historical proof by contradiction:
2 is irrational

1. Let’s assume BY WAY OF CONTRADICTION that 2 is rational.

2. So 2 = 𝑎𝑎
𝑏𝑏

, 𝑎𝑎, 𝑏𝑏 ∈ ℤ, 𝑏𝑏 ≠ 0 and 𝑎𝑎, 𝑏𝑏 do not have common factors.

3. So 𝑎𝑎 = 2 ⋅ 𝑏𝑏 ⇒ 𝑎𝑎2 = 2𝑏𝑏2 so 𝑎𝑎2 is even (1)



A historical proof by contradiction:
2 is irrational

1. Let’s assume BY WAY OF CONTRADICTION that 2 is rational.

2. So 2 = 𝑎𝑎
𝑏𝑏

, 𝑎𝑎, 𝑏𝑏 ∈ ℤ, 𝑏𝑏 ≠ 0 and 𝑎𝑎, 𝑏𝑏 do not have common factors.

3. So 𝑎𝑎 = 2 ⋅ 𝑏𝑏 ⇒ 𝑎𝑎2 = 2𝑏𝑏2 so 𝑎𝑎2 is even (1)
4. By the theorem proved before, this means that 𝑎𝑎 is even.



A historical proof by contradiction:
2 is irrational

1. Let’s assume BY WAY OF CONTRADICTION that 2 is rational.

2. So 2 = 𝑎𝑎
𝑏𝑏

, 𝑎𝑎, 𝑏𝑏 ∈ ℤ, 𝑏𝑏 ≠ 0 and 𝑎𝑎, 𝑏𝑏 do not have common factors.

3. So 𝑎𝑎 = 2 ⋅ 𝑏𝑏 ⇒ 𝑎𝑎2 = 2𝑏𝑏2 so 𝑎𝑎2 is even (1)
4. By the theorem proved before, this means that 𝑎𝑎 is even.
5. So 𝑎𝑎 = 2𝑘𝑘 for some integer 𝑘𝑘. (2)



A historical proof by contradiction:
2 is irrational

1. Let’s assume BY WAY OF CONTRADICTION that 2 is rational.
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A historical proof by contradiction:
2 is irrational

1. Let’s assume BY WAY OF CONTRADICTION that 2 is rational.
2. So 2 = 𝑎𝑎

𝑏𝑏
, 𝑎𝑎, 𝑏𝑏 ∈ ℤ, 𝑏𝑏 ≠ 0 and 𝑎𝑎, 𝑏𝑏 do not have common factors.

3. So 𝑎𝑎 = 2 ⋅ 𝑏𝑏 ⇒ 𝑎𝑎2 = 2𝑏𝑏2 so 𝑎𝑎2 is even (1)
4. By the theorem proved before, this means that 𝑎𝑎 is even.
5. So 𝑎𝑎 = 2𝑘𝑘 for some integer 𝑘𝑘. (2)
6. Substituting (2) into (1) yields: 2𝑘𝑘 2 = 2𝑏𝑏2 ⇒ 𝑏𝑏2 = 2𝑘𝑘2 ⇒
7. 𝑏𝑏2 is even ⇒ 𝑏𝑏 is even by previous theorem!
8. So both 𝑎𝑎 and 𝑏𝑏 are both even, which means that they have common 

factor of 2.
9. Contradiction.



Proof of a lemma

• Proof (via contraposition): We prove the contrapositive, i.e

If 𝑎𝑎2 is a multiple of 5, then so is 𝑎𝑎
⇔

If 𝑎𝑎 is not a multiple of 5, then 𝑎𝑎2 isn’t one either. 
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Proof of lemma
• Proof (by contraposition): We prove that:

if 𝑎𝑎 is not a multiple of 5, then 𝑎𝑎2 isn’t one either. 
1. Suppose that 𝑎𝑎 ∈ ℤ is not a multiple of 5.
2. Then, one of the following has to be the case (all ≡ are mod 5):

• 𝑎𝑎 ≡ 1 ⇒ 𝑎𝑎2 ≡ 12 ≡ 1 ≢ 0
• 𝑎𝑎 ≡ 2 ⇒ 𝑎𝑎2 ≡ 4 ≡ 4 ≢ 0
• 𝑎𝑎 ≡ 3 ⇒ 𝑎𝑎2 ≡ 12 ≡ 1 ≢ 0
• 𝑎𝑎 ≡ 4 ⇒ 𝑎𝑎2 ≡ 16 ≡ 1 ≢ 0



Adjustment: Proof that 5 is irrational

• Let’s assume BY WAY OF CONTRADICTION that 5 is rational.
• So 5 = 𝑎𝑎

𝑏𝑏
, 𝑎𝑎, 𝑏𝑏 ∈ ℤ, 𝑏𝑏 ≠ 0 and 𝑎𝑎, 𝑏𝑏 do not have common factors.

• So 𝑎𝑎 = 5 ⋅ 𝑏𝑏 ⇒ 𝑎𝑎2 = 5𝑏𝑏2 so 𝑎𝑎2 is a multiple of 5 (1)
• By the previous theorem, this means that 𝑎𝑎 is a multiple of 5.
• So 𝑎𝑎 = 5𝑘𝑘 for some integer 𝑘𝑘. (2)
• Substituting (2) into (1) yields: 5𝑘𝑘 2 = 5𝑏𝑏2 ⇒ 𝑏𝑏2 = 5𝑘𝑘2 ⇒

𝑏𝑏2 is a multiple of 5 ⇒ 𝑏𝑏 is a multiple of 5 by same theorem
• Since 𝑎𝑎 and 𝑏𝑏 are both multiples of 5, they have a common factor of 5.
• Contradiction.



Proof of 7 ∉ ℚ with Euclidean Argument
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• Why can we not use this machinery to prove that 4 is irrational 
(which is wrong anyway)?
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Proof that 4 is irrational (???)

• Why can we not use this machinery to prove that 4 is irrational 
(which is wrong anyway)?

• Observe that to prove 2 irrational, we needed lemma: 𝑥𝑥2 even ⇒ 𝑥𝑥
even.

• To prove 3 irrational, we need lemma: 𝑥𝑥2 mult 3 ⇒ 𝑥𝑥 mult 3
• To prove 4 irrational, we would need lemma: 𝑥𝑥2 mult 4 ⇒ 𝑥𝑥 mult 4.
• But this is not actually true! Counter-example: 𝑥𝑥 = 2



Exercise

• Please go ahead and find the smallest possible positive factors for the 
following numbers (excluding the trivial factor 1):

• 15
• 22
• 29
• 121
• 1024
• 1027



Exercise

• Please go ahead and find the smallest possible positive factors for the 
following numbers (excluding the trivial factor 1):

• 15 = 3 × 5 = 31 × 51
• 22 = 21 × 111
• 29 = 291
• 121 = 112
• 1024 = 210
• 1027 = 13 × 79 = 131 × 791



Exercise

• Please go ahead and find the smallest possible positive factors for the 
following numbers (excluding the trivial factor 1):

• 15 = 3 × 5 = 31 × 51
• 22 = 21 × 111
• 29 = 291
• 121 = 112
• 1024 = 210
• 1027 = 13 × 79 = 131 × 791

What do all of these factors 
have in common?



Exercise

• Please go ahead and find the smallest possible positive factors for the 
following numbers (excluding the trivial factor 1):

• 15 = 3 × 5 = 31 × 51
• 22 = 21 × 111
• 29 = 291
• 121 = 112
• 1024 = 210
• 1027 = 13 × 79 = 131 × 791

What do all of these factors 
have in common?

They are all primes!
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• Every positive integer 𝑛𝑛 ≥ 2 can be factored into a product of 
exclusively prime numbers



A result

• Every positive integer 𝑛𝑛 ≥ 2 can be factored into a product of 
exclusively prime numbers

• Moreover, this representation is unique, up to re-ordering of the 
individual factors in the product! For example:

• 15 = 31 × 51 = 51 × 31

• 1400 = 23 × 52 × 71 = 23 × 71 × 52 =
= 52× 23 × 71 = 52 × 71 × 23 =

= 71× 23 × 52 = 71 × 52 × 23



Unique Prime Factorization Theorem

• Every number 𝑛𝑛 ∈ ℕ≥2 can be uniquely factored into a product of 
prime numbers 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑘𝑘 like so:

𝑛𝑛 = 𝑝𝑝1
𝑒𝑒1 ⋅ 𝑝𝑝2

𝑒𝑒2 ⋅ … ⋅ 𝑝𝑝𝑘𝑘
𝑒𝑒𝑘𝑘 , 𝑒𝑒𝑖𝑖 ∈ ℕ>0



Unique Prime Factorization Theorem

• Every number 𝑛𝑛 ∈ ℕ≥2 can be uniquely factored into a product of 
prime numbers 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑘𝑘 like so:

𝑛𝑛 = 𝑝𝑝1
𝑒𝑒1 ⋅ 𝑝𝑝2

𝑒𝑒2 ⋅ … ⋅ 𝑝𝑝𝑘𝑘
𝑒𝑒𝑘𝑘 , 𝑒𝑒𝑖𝑖 ∈ ℕ>0

• Proving existence is easy 



Unique Prime Factorization Theorem

• Every number 𝑛𝑛 ∈ ℕ≥2 can be uniquely factored into a product of 
prime numbers 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑘𝑘 like so:

𝑛𝑛 = 𝑝𝑝1
𝑒𝑒1 ⋅ 𝑝𝑝2

𝑒𝑒2 ⋅ … ⋅ 𝑝𝑝𝑘𝑘
𝑒𝑒𝑘𝑘 , 𝑒𝑒𝑖𝑖 ∈ ℕ>0

• Proving existence is easy
• Proving uniqueness is harder 



Examples of “uniqueness”

• By “uniqueness” we mean that the product is unique up to reordering of 
the factors 𝑝𝑝𝑖𝑖

𝑒𝑒𝑖𝑖.
• Examples:

• 30 = 31 × 21× 51 = 51 × 21 × 31
• 88 = 23 × 111 = 111 × 23
• 1026 = 21 × 33 × 191 = 21 × 191 × 33= 191 × 21 × 33 = 33 × 191 × 21
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