START

RECORDING

Techniques of proof

Proving universal / Existential statements true or false Direct and indirect proof strategies

Basic definitions:Parity

- An integer n is called even if, and only if, there exists an integer k such that $n=2 k$.
- An integer n is called odd if, and only if, it is not even.
- Corollary: An integer n is called odd if, and only if, there exists an integer k such that $n=2 k+1$
- The property of an integer as being either odd or even is known as its parity.
- n is odd if, and only if, $n \equiv 1(\bmod 2)($ resp, even, iff $n \equiv 0(\bmod 2))$

Arguing the positive: Universal Statements

- Let's consider the following statement:
"The sum of an odd and an even integer is odd."

Arguing the positive: Universal Statements

- Let's consider the following statement:
"The sum of an odd and an even integer is odd."
- Do you believe this statement?

Arguing the positive: Universal Statements

- Let's consider the following statement:
"The sum of an odd and an even integer is odd."
- Do you believe this statement?

- If you believe it, you have to try to prove that it's true (argue the positive/affirmative)

Proof

- Let x be even, then $x \equiv 0(\bmod 2)$
- Let y be odd, then $y \equiv 1(\bmod 2)$
- Consequently, $x+y \equiv 0+1 \equiv 1(\bmod 2)$

Statements of claims / theorems

- Mathematical claims and theorems can be stated in various different ways!
"The sum of an odd and an even integer is odd."
"Any two integers of opposite parity sum to an odd number"
"Every pair of integers of opposite parity sums to an odd number"

$$
\left(\forall n_{1} \in \mathbb{Z}^{2 k+1}\right)\left(\forall n_{2} \in \mathbb{Z}^{2 k}\right)\left[n_{1}+n_{2} \in Z^{2 k+1}\right]
$$

Here's some more!

- Let's prove the following claims true:

1. The square of an odd integer is also odd.

Here's some more!

- Let's prove the following claims true:

1. The square of an odd integer is also odd.
2. If a is an integer, then $a^{2}+a$ is even.

Here's some more!

- Let's prove the following claims true:

1. The square of an odd integer is also odd.
2. If a is an integer, then $a^{2}+a$ is even.
3. If m is an even integer and n is an odd integer, $m^{2}+3 n$ is odd.

Here's some more!

- Let's prove the following claims true:

1. The square of an odd integer is also odd.
2. If a is an integer, then $a^{2}+a$ is even.
3. If m is an even integer and n is an odd integer, $m^{2}+3 n$ is odd.
4. If n is odd, $n^{2}=8 m+1$ for some integer m.

Here's some more!

- Let's prove the following claims true:

1. The square of an odd integer is also odd.
2. If a is an integer, then $a^{2}+a$ is even.
3. If m is an even integer and n is an odd integer, $m^{2}+3 n$ is odd.
4. If n is odd, $n^{2}=8 m+1$ for some integer m.
5. If a, b are rationals, ${ }^{(a+b)} / 2$ is also rational

Arguing the negative: counter-example

- Since

$$
(\sim \forall x \in D)[P(x)] \equiv(\exists x \in D)[\sim P(x)]
$$

- x is referred to as a counter-example.
- Examples:
a) All primes are odd.

Arguing the negative: counter-example

- Since

$$
(\sim \forall x \in D)[P(x)] \equiv(\exists x \in D)[\sim P(x)]
$$

- x is referred to as a counter-example.
- Examples:
a) All primes are odd. Disproof by counter-example:

1. All primes are odd.

Counter-example: 2 is prime but also even.

Arguing the negative: counter-example

- Since

$$
\sim(\forall x \in D)[P(x)] \equiv(\exists x \in D)[\sim P(x)]
$$

- x is referred to as a counter-example.
- Examples:
b) The tenths and units digits of all perfect squares 16 and above have an absolute difference bigger than 1.

Arguing the negative: counter-example

- Since

$$
\sim(\forall x \in D)[P(x)] \equiv(\exists x \in D)[\sim P(x)]
$$

- x is referred to as a counter-example.
- Examples:
b) The tens and ones digits of all perfect squares 16 and above have an absolute difference bigger than 1. Disproof by counterexample:

1. 100 is a perfect square ≥ 16, since $\sqrt{100}=10 \in \mathbb{Z}$.
2. The ones and tenths digits of 100 are 0 .
3. $0-0=0<1$.
4. By (1), (2), (3), we have that 100 is a counter-example.
5. Therefore, the statement is false. Done.

Perfect Squares

- Consider perfect square 16 or greater whose units and tenths digits have an absolute difference of less than 4.

| n | n^{2} | \|Ten - Unit| |
| :---: | :---: | :---: |
| 4 | 16 | 5 |
| 5 | 25 | 3 |
| 6 | 36 | 3 |

Perfect Squares

- $\forall x \geq 4$ [x^{2} has a difference of tens and units be $\left.<4\right]$

Perfect Squares

- $\forall x \geq 4$ [x^{2} has diff of tens and units be <4]
- False!
- Counterexample: 4^{2}

Perfect Squares

- $\forall x \geq 4$ [x^{2} has diff of tens and units be <4]
- False!
- Counterexample: 4^{2}
- $\forall x \geq 5$ [x^{2} has diff of tens and units be $\left.<4\right]$

Perfect Squares

- $\forall x \geq 5$ [x^{2} has diff of tens and units be <4]

n	n^{2}	\mid Ten - Unit \mid
20	400	0
21	441	3
22	484	4
23	529	7
24	576	1
25	625	3

n	n^{2}	\mid Ten - Unit \mid
26	676	1
27	729	7
28	784	4
29	841	3
30	900	0

Perfect Squares

- $\forall x \geq 5$ [x^{2} has diff of tens and units be <4]
- False!
- Counterexample: 22^{2}

Perfect Squares

- $\forall x \geq 5$ [x^{2} has diff of tens and units be <4]
- False!
- Counterexample: 22^{2}
- $\forall x \geq 29\left[x^{2}\right.$ has diff of tens and units be $\left.<4\right]$

Perfect Squares

- $\forall x \geq 5$ [x^{2} has diff of tens and units be <4]
- False!
- Counterexample: 22^{2}
- $\forall x \geq 29\left[x^{2}\right.$ has diff of tens and units be $\left.<4\right]$
- Don't know. On a HW will ask you to write a program to see what happens up to 1000.

Arguing the affirmative of existential statements

- Two methods:

1. Constructive
2. Non-Constructive

- In "constructive" proofs we either explicitly show or construct an element of the domain that answers our query.
- In non-constructive proofs (very rare in this class) we prove that it is a logical necessity for such an element to exist!
- But we neither explicitly, nor implicitly, show or construct such an element!

Constructive proofs in Number Theory (and one nonconstructive one)

Our first constructive proof

- Claim: There exists a natural number that you cannot write as a sum of three squares of natural numbers.
- Examples of numbers you can write as a sum of three squares:
- $0=0^{2}+0^{2}+0^{2}$
- $1=1^{2}+0^{2}+0^{2}$
- $2=1^{2}+1^{2}+0^{2}$
- Try to find a number that cannot be written as such.

Proof

- The natural number 7 cannot be written as the sum of three squares.
- This we can prove by case analysis:

1. Can't use 3 , since $3^{2}=9>7$
2. Can't use 2 more than once, since $2^{2}+2^{2}=8>7$
3. So, we can use 2 , one or zero times.
a) If we use 2 once, we have $7=2^{2}+a^{2}+b^{2} \leq 2^{2}+1^{2}+1^{2}=6<7$
b) If we use 2 zero times, the maximum value is $1^{2}+1^{2}+1^{2}=3<7$
4. Done!

Sum of Three Squares

- In Breakout Rooms, Find:
- Other numbers that are NOT the sum of 3 squares
- Try to prove there are an INFINITE number of numbers that are NOT the sum of 3 squares

Sum of Three Squares

- If $n \equiv 7(\bmod 8)$, then n CANNOT be written as the sum of 3 squares

Mod 8	
$0^{2} \equiv 0$	$4^{2} \equiv 0$
$1^{2} \equiv 1$	$5^{2} \equiv 1$
$2^{2} \equiv 4$	$6^{2} \equiv 4$
$3^{2} \equiv 1$	$7^{2} \equiv 1$

Sum of Three Squares

So, is there some way for three numbers from $0,1,4$ to add up to $7(\bmod 8)$?

Case 1: Use zero 4's. Then max is $1+1+1 \equiv 3<7$.
Case 2: Use exactly one 4 . Then we have to get 3 with two of $\{0,1\}$, but the \max is $1+1 \equiv 2<4$.

Case 3: Use two 4's $4+4+0=1,4+4+1 \equiv 2$.

Case 4: Use three 4's 4+4+4 三4.

Your turn, class!

- Let's break into breakout rooms and prove the following theorems:

1. There exists an integer n that can be written in two ways (i.e at least one of the two summands is different) as a sum of two prime numbers.
2. There is a perfect square that can be written as a sum of two other perfect squares.
3. Suppose $r, s \in \mathbb{Z}$. Then, $(\exists k \in \mathbb{Z})[22 r+18 s=2 k]$

Your turn, class!

- Let's split in teams and prove the following theorems:

1. There exists an integer n that can be written in two ways (i.e at least one of the two summands is different) as a sum of two prime numbers.
2. There is a perfect square that can be written as a sum of two other perfect squares.
3. Suppose $r, s \in \mathbb{Z}$. Then, $(\exists k \in \mathbb{Z})[22 r+18 s=2 k]$

Our first non-constructive proof

- Theorem: There exists a pair of irrational numbers a and b such that a^{b} is a rational number.

Our first non-constructive proof

- For the following proof, we will assume known that $\sqrt{2} \notin \mathbb{Q}$.
- This is a fact, which we will prove later on in this section.
- Now, on to the proof!

Our first non-constructive proof

- Theorem: There exists a pair of irrational numbers a and b such that a^{b} is a rational number.

Our first non-constructive proof

- Theorem: There exists a pair of irrational numbers a and b such that a^{b} is a rational number.
- Proof: Let $a=b=\sqrt{2}$. Since $\sqrt{2}$ is irrational, a and b are both irrational. Is $a^{b}=(\sqrt{2})^{\sqrt{2}}$ rational? Two cases:

Our first non-constructive proof

- Theorem: There exists a pair of irrational numbers a and b such that a^{b} is a rational number.
- Proof: Let $a=b=\sqrt{2}$. Since $\sqrt{2}$ is irrational, a and b are both irrational. Is $a^{b}=(\sqrt{2})^{\sqrt{2}}$ rational? Two cases:

1. If $\sqrt{2}^{\sqrt{2}}$ is rational, then we have proven the result. Done.

Our first non-constructive proof

- Theorem: There exists a pair of irrational numbers a and b such that a^{b} is a rational number.
- Proof: Let $a=b=\sqrt{2}$. Since $\sqrt{2}$ is irrational, a and b are both irrational. Is $a^{b}=(\sqrt{2})^{\sqrt{2}}$ rational? Two cases:

1. If $\sqrt{2}^{\sqrt{2}}$ is rational, then we have proven the result. Done.
2. If $\sqrt{2}^{\sqrt{2}}$ is irrational, then we will name it c. Then, observe that $c^{\sqrt{2}}$ is rational, since $c^{\sqrt{2}}=\left((\sqrt{2})^{\sqrt{2}}\right)^{\sqrt{2}}=(\sqrt{2})^{2}=2 \in \mathbb{Q}$. Since both c and $\sqrt{2}$ are irrationals, but $c^{\sqrt{2}}$ is rational, we are done.

Analysis of proof

- Suppose $x=\sqrt{2}$, an irrational. From the previous theorem, we know:
a) Either that $a=x, b=x$ are two irrationals that satisfy the condition, OR
b) That $a=x^{x}, b=x$ are the two irrationals.
- But we don't care which pair it is! As long as one exists!

Indirect Proofs of Number Theory

- Sometimes, proving a fact directly is tough.
- In such cases, we can attempt an indirect proof
- Those are split in two categories:

1. Proofs by contraposition
2. Proofs by contradiction

- We will see examples of both.

Proof by contraposition

- Applicable to all kinds of statements of type:

$$
(\forall x \in D)[P(x) \Rightarrow Q(x)]
$$

- Sometimes, proving the implication in this way can be hard.
- On the other hand, proving its contrapositive:

$$
(\forall x \in D)[\sim Q(x) \Rightarrow \sim P(x)]
$$

Examples

- $(\forall a \in \mathbb{Z})\left[\left(a^{2}\right.\right.$ even $) \Rightarrow(a$ even $\left.)\right]$

Examples

- $(\forall a \in \mathbb{Z})\left[\left(a^{2}\right.\right.$ even $) \Rightarrow(a$ even $\left.)\right]$
- Do we believe this to be true?

Examples

- $(\forall a \in \mathbb{Z})\left[\left(a^{2}\right.\right.$ even $) \Rightarrow(a$ even $\left.)\right]$
- Do we believe this to be true?

- So we should aim for a proof of the affirmative!

Examples

- $(\forall a \in \mathbb{Z})\left[\left(a^{2}\right.\right.$ even $) \Rightarrow($ a even $\left.)\right]$
- Proving this directly is somewhat hard
- On the other hand, the contrapositive:

$$
(\forall a \in \mathbb{Z})\left[(a \text { odd }) \Rightarrow\left(a^{2} \text { odd }\right)\right]
$$

is much easier!

Proof that $(\forall a \in \mathbb{Z})\left[(a\right.$ odd $) \Rightarrow\left(a^{2}\right.$ odd $\left.)\right]$

1. Suppose a is an odd integer.
2. Then, $a \equiv 1(\bmod 2)$.
3. By algebra, $a^{2} \equiv 1^{2} \equiv 1(\bmod 2)$.
4. Done.

Another example

If $3 n+2$ is odd, where $n \in \mathbb{Z}$, then n is odd.

Another example

If $3 n+2$ is odd, where $n \in \mathbb{Z}$, then n is odd.

Let's try this one together.

Another example

$$
\text { If } n=a \cdot b \text {, where } a, b \in \mathbb{N}^{\geq 1} \text {, then } a \leq \sqrt{n} \text { OR } b \leq \sqrt{n}
$$

Another example

If $n=a \cdot b$, where $a, b \in \mathbb{N}^{\geq 1}$, then $a \leq \sqrt{n}$ OR $b \leq \sqrt{n}$

Proof by contradiction

- The most common type of indirect proof is proof by contradiction
- Briefly: We want to prove a fact a, so we assume $\sim \boldsymbol{a}$ and hope that we reach a contradiction (a falsehood).

Proof by contradiction

- The most common type of indirect proof is proof by contradiction
- Briefly: We want to prove a fact a, so we assume $\sim \boldsymbol{a}$ and hope that we reach a contradiction (a falsehood).

This is a so-called "conditional world": It's a "version" of our world where we assume $\sim a$.

Proof by contradiction

- The most common type of indirect proof is proof by contradiction
- Briefly: We want to prove a fact a, so we assume $\sim \boldsymbol{a}$ and hope that we reach a contradiction (a falsehood).

We follow some classic direct proof sets, and reach a statement that is a logical contradiction! (e.g $1>2$)

Proof by contradiction

- The most common type of indirect proof is proof by contradiction
- Briefly: We want to prove a fact a, so we assume $\sim \boldsymbol{a}$ and hope that we reach a contradiction (a falsehood).

We follow some classic direct proof sets, and reach a statement that is a logical contradiction! (e.g 1 > 2)

This means that this conditional world cannot possibly exist! The only "possible" worlds have a in it.

Proof by contradiction

- The most common type of indirect proof is proof by contradiction
- Briefly: We want to prove a fact a, so we assume $\sim \boldsymbol{a}$ and hope that we reach a contradiction (a falsehood).

We follow some classic direct proof sets, and reach a statement that is a logical contradiction! (e.g $1>2$)

This means that this conditional world cannot possibly exist! The only "possible" worlds have a in it.

Proof by contradiction

- Proof of contradiction is often used in statements that look obvious!
- Example: We will prove that there is no greatest integer.

Proof by contradiction

- Proof of contradiction is often used in statements that look obvious!
- Example: We will prove that there is no greatest integer.
- Proof:

1. Assume that the statement is false. Then, there is a greatest integer.
2. Call the integer assumed in step 1 N .
3. By closure of \mathbb{Z} over addition, we have that $N+1 \in \mathbb{Z}$.
4. But $N+1>N$.
5. Steps 4 and 1 are a contradiction. Therefore, there does not exist a greatest integer.

Your turn!

- Prove that the square root of any irrational is also irrational

A historical proof by contradiction:
$\sqrt{2}$ is irrational

A historical proof by contradiction: $\sqrt{2}$ is irrational

1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.

A historical proof by contradiction: $\sqrt{2}$ is irrational

1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.
2. So $\sqrt{2}=\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$ and a, b do not have common factors.

A historical proof by contradiction: $\sqrt{2}$ is irrational

1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.
2. So $\sqrt{2}=\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$ and a, b do not have common factors.
3. So $a=\sqrt{2} \cdot b \Rightarrow a^{2}=2 b^{2}$ so a^{2} is even (1)

A historical proof by contradiction: $\sqrt{2}$ is irrational

1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.
2. So $\sqrt{2}=\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$ and a, b do not have common factors.
3. So $a=\sqrt{2} \cdot b \Rightarrow a^{2}=2 b^{2}$ so a^{2} is even (1)
4. By the theorem proved before, this means that a is even.

A historical proof by contradiction: $\sqrt{2}$ is irrational

1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.
2. So $\sqrt{2}=\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$ and a, b do not have common factors.
3. So $a=\sqrt{2} \cdot b \Rightarrow a^{2}=2 b^{2}$ so a^{2} is even (1)
4. By the theorem proved before, this means that a is even.
5. So $a=2 k$ for some integer k. (2)

A historical proof by contradiction: $\sqrt{2}$ is irrational

1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.
2. So $\sqrt{2}=\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$ and a, b do not have common factors.
3. So $a=\sqrt{2} \cdot b \Rightarrow a^{2}=2 b^{2}$ so a^{2} is even (1)
4. By the theorem proved before, this means that a is even.
5. So $a=2 k$ for some integer k. (2)
6. Substituting (2) into (1) yields: $(2 k)^{2}=2 b^{2} \Rightarrow b^{2}=2 k^{2} \Rightarrow$

A historical proof by contradiction: $\sqrt{2}$ is irrational

1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.
2. So $\sqrt{2}=\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$ and a, b do not have common factors.
3. So $a=\sqrt{2} \cdot b \Rightarrow a^{2}=2 b^{2}$ so a^{2} is even (1)
4. By the theorem proved before, this means that a is even.
5. So $a=2 k$ for some integer k. (2)
6. Substituting (2) into (1) yields: $(2 k)^{2}=2 b^{2} \Rightarrow b^{2}=2 k^{2} \Rightarrow$
7. b^{2} is even $\Rightarrow b$ is even by previous theorem!

A historical proof by contradiction: $\sqrt{2}$ is irrational

1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.
2. So $\sqrt{2}=\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$ and a, b do not have common factors.
3. So $a=\sqrt{2} \cdot b \Rightarrow a^{2}=2 b^{2}$ so a^{2} is even (1)
4. By the theorem proved before, this means that a is even.
5. So $a=2 k$ for some integer k. (2)
6. Substituting (2) into (1) yields: $(2 k)^{2}=2 b^{2} \Rightarrow b^{2}=2 k^{2} \Rightarrow$
7. b^{2} is even $\Rightarrow b$ is even by previous theorem!
8. So both a and b are both even, which means that they have common factor of 2.

A historical proof by contradiction: $\sqrt{2}$ is irrational

1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.
2. So $\sqrt{2}=\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$ and a, b do not have common factors.
3. So $a=\sqrt{2} \cdot b \Rightarrow a^{2}=2 b^{2}$ so a^{2} is even (1)
4. By the theorem proved before, this means that a is even.
5. So $a=2 k$ for some integer k. (2)
6. Substituting (2) into (1) yields: $(2 k)^{2}=2 b^{2} \Rightarrow b^{2}=2 k^{2} \Rightarrow$
7. b^{2} is even $\Rightarrow b$ is even by previous theorem!
8. So both a and b are both even, which means that they have common factor of 2.
9. Contradiction.

Proof of a lemma

- Proof (via contraposition): We prove the contrapositive, i.e

$$
\begin{gathered}
\text { If } a^{2} \text { is a multiple of } 5 \text {, then so is a } \\
\Leftrightarrow
\end{gathered}
$$

If a is not a multiple of 5 , then a^{2} isn't one either.

Proof of lemma

- Proof (by contraposition): We prove that:

$$
\text { if } a \text { is not a multiple of 5, then } a^{2} \text { isn't one either. }
$$

Proof of lemma

- Proof (by contraposition): We prove that:

1. Suppose that $a \in \mathbb{Z}$ is not a multiple of 5 .

Proof of lemma

- Proof (by contraposition): We prove that:

$$
\text { if } a \text { is not a multiple of } 5 \text {, then } a^{2} \text { isn't one either. }
$$

1. Suppose that $a \in \mathbb{Z}$ is not a multiple of 5 .
2. Then, one of the following has to be the case (all \equiv are $\bmod 5)$:

- $a \equiv 1 \Rightarrow a^{2} \equiv 1^{2} \equiv 1 \not \equiv 0$
- $a \equiv 2 \Rightarrow a^{2} \equiv 4 \equiv 4 \not \equiv 0$
- $a \equiv 3 \Rightarrow a^{2} \equiv 1^{2} \equiv 1 \not \equiv 0$
- $a \equiv 4 \Rightarrow a^{2} \equiv 16 \equiv 1 \not \equiv 0$

Adjustment: Proof that $\sqrt{5}$ is irrational

- Let's assume BY WAY OF CONTRADICTION that $\sqrt{5}$ is rational.
- So $\sqrt{5}=\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$ and a, b do not have common factors.
- So $a=\sqrt{5} \cdot b \Rightarrow a^{2}=5 b^{2}$ so a^{2} is a multiple of 5 (1)
- By the previous theorem, this means that a is a multiple of 5 .
- So $a=5 k$ for some integer k. (2)
- Substituting (2) into (1) yields: $(5 k)^{2}=5 b^{2} \Rightarrow b^{2}=5 k^{2} \Rightarrow$ b^{2} is a multiple of $5 \Rightarrow b$ is a multiple of 5 by same theorem
- Since a and b are both multiples of 5 , they have a common factor of 5 .
- Contradiction.

Proof of $\sqrt{7} \notin \mathbb{Q}$ with Euclidean Argument

Proof that $\sqrt{4}$ is irrational (???)

- Why can we not use this machinery to prove that $\sqrt{4}$ is irrational (which is wrong anyway)?

Proof that $\sqrt{4}$ is irrational (???)

- Why can we not use this machinery to prove that $\sqrt{4}$ is irrational (which is wrong anyway)?
- Observe that to prove $\sqrt{2}$ irrational, we needed lemma: x^{2} even $\Rightarrow x$ even

Proof that $\sqrt{4}$ is irrational (???)

- Why can we not use this machinery to prove that $\sqrt{4}$ is irrational (which is wrong anyway)?
- Observe that to prove $\sqrt{2}$ irrational, we needed lemma: x^{2} even $\Rightarrow x$ even.
- To prove $\sqrt{3}$ irrational, we need lemma: x^{2} mult $3 \Rightarrow x$ mult 3

Proof that $\sqrt{4}$ is irrational (???)

- Why can we not use this machinery to prove that $\sqrt{4}$ is irrational (which is wrong anyway)?
- Observe that to prove $\sqrt{2}$ irrational, we needed lemma: x^{2} even $\Rightarrow x$ even.
- To prove $\sqrt{3}$ irrational, we need lemma: x^{2} mult $3 \Rightarrow x$ mult 3
- To prove $\sqrt{4}$ irrational, we would need lemma: x^{2} mult $4 \Rightarrow x$ mult 4 .

Proof that $\sqrt{4}$ is irrational (???)

- Why can we not use this machinery to prove that $\sqrt{4}$ is irrational (which is wrong anyway)?
- Observe that to prove $\sqrt{2}$ irrational, we needed lemma: x^{2} even $\Rightarrow x$ even.
- To prove $\sqrt{3}$ irrational, we need lemma: x^{2} mult $3 \Rightarrow x$ mult 3
- To prove $\sqrt{4}$ irrational, we would need lemma: x^{2} mult $4 \Rightarrow x$ mult 4 .
- But this is not actually true! Counter-example: $x=2$

Exercise

- Please go ahead and find the smallest possible positive factors for the following numbers (excluding the trivial factor 1):
- 15
- 22
- 29
- 121
- 1024
- 1027

Exercise

- Please go ahead and find the smallest possible positive factors for the following numbers (excluding the trivial factor 1):
- $15=3 \times 5=3^{1} \times 5^{1}$
- $22=2^{1} \times 11^{1}$
- $29=29^{1}$
- $121=11^{2}$
- $1024=2^{10}$
- $1027=13 \times 79=13^{1} \times 79^{1}$

Exercise

- Please go ahead and find the smallest possible positive factors for the following numbers (excluding the trivial factor 1):
- $15=3 \times 5=3^{1} \times 5^{1}$
- $22=2^{1} \times 11^{1}$
- $29=29^{1}$
- $121=11^{2}$
- $1024=2^{10}$
- $1027=13 \times 79=13^{1} \times 79^{1}$

What do all of these factors have in common?

Exercise

- Please go ahead and find the smallest possible positive factors for the following numbers (excluding the trivial factor 1):
- $15=3 \times 5=3^{1} \times 5^{1}$
- $22=2^{1} \times 11^{1}$
- $29=29^{1}$
- $121=11^{2}$
- $1024=2^{10}$
- $1027=13 \times 79=13^{1} \times 79^{1}$

What do all of these factors have in common?

They are all primes!

A result

- Every positive integer $n \geq 2$ can be factored into a product of exclusively prime numbers

A result

- Every positive integer $n \geq 2$ can be factored into a product of exclusively prime numbers
- Moreover, this representation is unique, up to re-ordering of the individual factors in the product! For example:
- $15=3^{1} \times 5^{1}=5^{1} \times 3^{1}$
- $1400=2^{3} \times 5^{2} \times 7^{1}=2^{3} \times 7^{1} \times 5^{2}=$

$$
\begin{gathered}
=5^{2} \times 2^{3} \times 7^{1}=5^{2} \times 7^{1} \times 2^{3}= \\
=7^{1} \times 2^{3} \times 5^{2}=7^{1} \times 5^{2} \times 2^{3}
\end{gathered}
$$

Unique Prime Factorization Theorem

- Every number $n \in \mathbb{N}^{\geq 2}$ can be uniquely factored into a product of prime numbers $p_{1}, p_{2}, \ldots, p_{k}$ like so:

$$
n=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdot \ldots \cdot p_{k}^{e_{k}}, \quad e_{i} \in \mathbb{N}^{>0}
$$

Unique Prime Factorization Theorem

- Every number $n \in \mathbb{N}^{\geq 2}$ can be uniquely factored into a product of prime numbers $p_{1}, p_{2}, \ldots, p_{k}$ like so:

$$
n=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdot \ldots \cdot p_{k}^{e_{k}}, \quad e_{i} \in \mathbb{N}^{>0}
$$

- Proving existence is easy

Unique Prime Factorization Theorem

- Every number $n \in \mathbb{N}^{\geq 2}$ can be uniquely factored into a product of prime numbers $p_{1}, p_{2}, \ldots, p_{k}$ like so:

$$
n=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdot \ldots \cdot p_{k}^{e_{k}}, \quad e_{i} \in \mathbb{N}^{>0}
$$

- Proving existence is easy
- Proving uniqueness is harder

Examples of "uniqueness"

- By "uniqueness" we mean that the product is unique up to reordering of the factors $p_{i}^{e_{i}}$.
- Examples:
- $30=3^{1} \times 2^{1} \times 5^{1}=5^{1} \times 2^{1} \times 3^{1}$
- $88=2^{3} \times 11^{1}=11^{1} \times 2^{3}$
- $1026=2^{1} \times 3^{3} \times 19^{1}=2^{1} \times 19^{1} \times 3^{3}=19^{1} \times 2^{1} \times 3^{3}=3^{3} \times 19^{1} \times 2^{1}$

A necessary lemma

- Claim: Let $p \in \mathbf{P}, a \in \mathbb{N}$. Then, if $p \mid a$, then $p \nmid(a+1)$.

A necessary lemma

Set of primes

- Claim: Let $p \in \mathbf{P}, a \in \mathbb{N}$. Then, if $p \mid a$, then $p \nmid(a+1)$.
- Proof:
- Assume that $p \mid(a+1)$. Then, this means that $\left(\exists r_{1} \in \mathbb{Z}\right)[a+$ $1=p \cdot r_{1}$] (I)
- We already know that $p \mid a \Rightarrow\left(\exists r_{2} \in \mathbb{Z}\right)\left[a=p \cdot r_{2}\right]$ (II)
- Substituting (II) into (I) yields: $p \cdot r_{2}+1=p \cdot r_{1} \Rightarrow$ $p\left(r_{1}-r_{2}\right)=1 \Rightarrow p \mid 1$ which is a contradiction. Therefore, $p \nmid(a+1)$.

Infinity of primes

- Assume that the primes are finite. Then, we can list them in ascending order:

$$
p_{1}, p_{2}, \ldots, p_{n}
$$

Infinity of primes

- Assume that the primes are finite. Then, we can list them in ascending order:

$$
p_{1}, p_{2}, \ldots, p_{n}
$$

Let's consider the number

$$
N=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{n}+1
$$

Infinity of primes

$$
N=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{n}+1
$$

Clearly, N is bigger than any p_{i}. We have two cases:
i. $\quad N$ is prime. Contradiction, since N is bigger than any prime.
ii. $\quad N$ is composite. This means that N has at least one factor f. Let's take the smallest factor of N, and call it $f_{\min }$. Then, this number is prime (why?) Since $f_{\text {min }}$ is prime, it divides $p_{1} \cdot p_{2} \cdot \ldots \cdot p_{n}$. By the previous theorem, this means that it cannot possibly divide $p_{1} \cdot p_{2} \cdot \ldots \cdot p_{n}+1=N$. Contradiction, since we assumed that $f_{\min }$ is a factor of N .

Therefore, the primes are not finite.

STOP

