START

RECORDING

Techniques of proof

Proving universal / Existential statements **true** or **false Direct** and **indirect** proof strategies

Basic definitions: Parity

- An integer *n* is called **even** if, and only if, there exists an integer *k* such that n = 2k.
- An integer *n* is called **odd** if, and only if, it is not even.
- Corollary: An integer n is called odd if, and only if, there exists an integer k such that n = 2k + 1
- The property of an integer as being either odd or even is known as its parity.
- *n* is odd if, and only if, $n \equiv 1 \pmod{2}$ (resp, even, iff $n \equiv 0 \pmod{2}$)

Arguing the positive: Universal Statements

• Let's consider the following statement:

"The sum of an odd and an even integer is odd."

Arguing the positive: Universal Statements

• Let's consider the following statement:

"The sum of an odd and an even integer is odd."

• Do you believe this statement?

Arguing the positive: Universal Statements

• Let's consider the following statement:

"The sum of an odd and an even integer is odd."

• Do you believe this statement?

• If you believe it, you have to try to prove that it's true (argue the positive/affirmative)

Proof

- Let x be even, then $x \equiv 0 \pmod{2}$
- Let y be odd, then $y \equiv 1 \pmod{2}$
- Consequently, $x + y \equiv 0 + 1 \equiv 1 \pmod{2}$

Statements of claims / theorems

• Mathematical claims and theorems can be stated in various different ways!

- Let's prove the following claims **true**:
- 1. The square of an odd integer is also odd.

- Let's prove the following claims **true**:
- 1. The square of an odd integer is also odd.
- 2. If *a* is an integer, then $a^2 + a$ is even.

- Let's prove the following claims **true**:
- 1. The square of an odd integer is also odd.
- 2. If *a* is an integer, then $a^2 + a$ is even.
- 3. If m is an even integer and n is an odd integer, $m^2 + 3n$ is odd.

- Let's prove the following claims **true**:
- 1. The square of an odd integer is also odd.
- 2. If *a* is an integer, then $a^2 + a$ is even.
- 3. If m is an even integer and n is an odd integer, $m^2 + 3n$ is odd.
- 4. If n is odd, $n^2 = 8m + 1$ for some integer m.

- Let's prove the following claims **true**:
- 1. The square of an odd integer is also odd.
- 2. If *a* is an integer, then $a^2 + a$ is even.
- 3. If m is an even integer and n is an odd integer, $m^2 + 3n$ is odd.
- 4. If n is odd, $n^2 = 8m + 1$ for some integer m.
- 5. If *a*, *b* are <u>*rationals*</u>, $(a+b)/_2$ is also rational

• Since

$$(\sim \forall x \in D)[P(x)] \equiv (\exists x \in D)[\sim P(x)]$$

- *x* is referred to as a *counter-example*.
- Examples:
 - a) All primes are odd.

• Since

$$(\sim \forall x \in D)[P(x)] \equiv (\exists x \in D)[\sim P(x)]$$

- *x* is referred to as a *counter-example*.
- Examples:
 - *a)* All primes are odd. **Disproof by counter-example:**
 - 1. All primes are odd.

Counter-example: 2 is prime but also even.

• Since

$$\sim (\forall x \in D)[P(x)] \equiv (\exists x \in D)[\sim P(x)]$$

- *x* is referred to as a *counter-example*.
- Examples:
 - b) The tenths and units digits of all perfect squares 16 and above have an absolute difference bigger than 1.

• Since

$$\sim (\forall x \in D)[P(x)] \equiv (\exists x \in D)[\sim P(x)]$$

- *x* is referred to as a *counter-example*.
- Examples:
 - b) The tens and ones digits of all perfect squares 16 and above have an absolute difference bigger than 1. <u>Disproof by counterexample:</u>
 - 1. 100 is a perfect square ≥ 16 , since $\sqrt{100} = 10 \in \mathbb{Z}$.
 - 2. The ones **and** tenths digits of 100 are 0.
 - 3. 0 0 = 0 < 1.
 - 4. By (1), (2), (3), we have that 100 is a counter-example.
 - 5. Therefore, the statement is **false**. Done.

• Consider perfect square 16 or greater whose *units* and *tenths* digits have an absolute difference of less than 4.

n	n²	Ten - Unit
4	16	5
5	25	3
6	36	3

• $\forall x \ge 4 \ [x^2 \text{ has a difference of tens and units be } < 4]$

- $\forall x \ge 4 \ [x^2 \text{ has diff of tens and units be } < 4]$
- False!
- Counterexample: 4²

- $\forall x \ge 4 \ [x^2 \text{ has diff of tens and units be } < 4]$
- False!
- Counterexample: 4²
- $\forall x \ge 5 \ [x^2 \text{ has diff of tens and units be } < 4]$

• $\forall x \ge 5 \ [x^2 \text{ has diff of tens and units be } < 4]$

n	n²	Ten - Unit
20	400	0
21	441	3
22	484	4
23	529	7
24	576	1
25	625	3

n	n²	Ten - Unit
26	676	1
27	729	7
28	784	4
29	841	3
30	900	0

- $\forall x \ge 5 \ [x^2 \text{ has diff of tens and units be } < 4]$
- False!
- Counterexample: 22²

- $\forall x \ge 5 \ [x^2 \text{ has diff of tens and units be } < 4]$
- False!
- Counterexample: 22²
- $\forall x \ge 29 \ [x^2 \text{ has diff of tens and units be } < 4]$

- $\forall x \ge 5 \ [x^2 \text{ has diff of tens and units be } < 4]$
- False!
- Counterexample: 22²
- $\forall x \ge 29 \left[x^2 \text{ has diff of tens and units be } < 4 \right]$
 - Don't know. On a HW will ask you to write a program to see what happens up to 1000.

Arguing the affirmative of **existential** statements

- Two methods:
 - 1. Constructive
 - 2. Non-Constructive
- In "constructive" proofs we either explicitly show or construct an element of the domain that answers our query.
- In non-constructive proofs (very rare in this class) we prove that it is a logical necessity for such an element to exist!
 - But we neither explicitly, nor implicitly, show or construct such an element!

Constructive proofs in Number Theory (and one nonconstructive one)

Our first constructive proof

- **Claim**: There exists a natural number that you *cannot* write as a sum of three squares of natural numbers.
 - Examples of numbers you *can* write as a sum of three squares:
 - $0 = 0^2 + 0^2 + 0^2$
 - $1 = 1^2 + 0^2 + 0^2$
 - $2 = 1^2 + 1^2 + 0^2$
- Try to find a number that *cannot* be written as such.

Proof

- The natural number 7 cannot be written as the sum of three squares.
- This we can prove by case analysis:
 - 1. Can't use 3, since $3^2 = 9 > 7$
 - 2. Can't use 2 more than once, since $2^2 + 2^2 = 8 > 7$
 - 3. So, we can use 2, one or zero times.
 - a) If we use 2 once, we have $7 = 2^2 + a^2 + b^2 \le 2^2 + 1^2 + 1^2 = 6 < 7$
 - b) If we use 2 zero times, the maximum value is $1^2 + 1^2 + 1^2 = 3 < 7$
 - 4. Done!

Sum of Three Squares

- In Breakout Rooms, Find:
 - Other numbers that are NOT the sum of 3 squares
 - Try to prove there are an INFINITE number of numbers that are NOT the sum of 3 squares

Sum of Three Squares

• If $n \equiv 7 \pmod{8}$, then *n* CANNOT be written as the sum of 3 squares

Mod 8		
$0^2 \equiv 0$	$4^2 \equiv 0$	
$1^2 \equiv 1$	$5^2 \equiv 1$	
$2^2 \equiv 4$	$6^2 \equiv 4$	
$3^2 \equiv 1$	$7^2 \equiv 1$	

Sum of Three Squares

So, is there some way for three numbers from 0, 1, 4 to add up to $7(mod \ 8)$?

Case 1: Use *zero* 4's. Then max is 1+1+1≡3 < 7.

Case 2: Use exactly *one* 4. Then we have to get 3 with two of $\{0,1\}$, but the max is $1+1 \equiv 2 < 4$.

Case 3: Use *two* 4's 4+4+0=1, $4+4+1 \equiv 2$.

Case 4: Use *three* 4's $4+4+4 \equiv 4$.

Your turn, class!

- Let's break into breakout rooms and prove the following theorems:
- There exists an integer n that can be written in two ways (i.e at least one of the two summands is different) as a sum of two prime numbers.
- 2. There is a **perfect square** that can be written as a sum of two other **perfect squares**.
- 3. Suppose $r, s \in \mathbb{Z}$. Then, $(\exists k \in \mathbb{Z})[22r + 18s = 2k]$

Your turn, class!

- Let's split in teams and prove the following theorems:
- There exists an integer n that can be written in two ways (i.e at least one of the two summands is different) as a sum of two prime numbers.
- 2. There is a **perfect square** that can be written as a sum of two other **perfect squares**.
- 3. Suppose $r, s \in \mathbb{Z}$. Then, $(\exists k \in \mathbb{Z})[22r + 18s = 2k]$

How is the 3rd proof different from the others?

Our first non-constructive proof

• **Theorem**: There exists a pair of irrational numbers *a* and *b* such that a^b is a rational number.

Our first non-constructive proof

- For the following proof, we will assume known that $\sqrt{2} \notin \mathbb{Q}$.
- This is a *fact*, which we will prove later on in this section.
- Now, on to the proof!

• **Theorem**: There exists a pair of irrational numbers *a* and *b* such that a^b is a rational number.

- **Theorem**: There exists a pair of irrational numbers *a* and *b* such that a^b is a rational number.
- **Proof**: Let $a = b = \sqrt{2}$. Since $\sqrt{2}$ is irrational, a and b are both irrational. Is $a^b = (\sqrt{2})^{\sqrt{2}}$ rational? Two cases:

- **Theorem**: There exists a pair of irrational numbers *a* and *b* such that a^b is a rational number.
- Proof: Let a = b = √2. Since √2 is irrational, a and b are both irrational. Is a^b = (√2)^{√2} rational? Two cases:
 1. If √2^{√2} is rational, then we have proven the result. Done.

- **Theorem**: There exists a pair of irrational numbers *a* and *b* such that a^b is a rational number.
- **Proof**: Let $a = b = \sqrt{2}$. Since $\sqrt{2}$ is irrational, a and b are both irrational. Is $a^b = (\sqrt{2})^{\sqrt{2}}$ rational? Two cases:

1. If $\sqrt{2}^{\sqrt{2}}$ is rational, then we have proven the result. Done.

2. If $\sqrt{2}^{\sqrt{2}}$ is irrational, then we will name it c. Then, observe that $c^{\sqrt{2}}$ is rational, since $c^{\sqrt{2}} = \left(\left(\sqrt{2}\right)^{\sqrt{2}}\right)^{\sqrt{2}} = \left(\sqrt{2}\right)^2 = 2 \in \mathbb{Q}$. Since both c and $\sqrt{2}$ are irrationals, but $c^{\sqrt{2}}$ is rational, we are done.

Analysis of proof

- Suppose $x = \sqrt{2}$, an irrational. From the previous theorem, we know:
 - a) Either that a = x, b = x are two irrationals that satisfy the condition , OR
 - b) That $a = x^x$, b = x are the two irrationals.
- But we don't care which pair it is! As long as one exists!

Indirect Proofs of Number Theory

- Sometimes, proving a fact *directly* is tough.
- In such cases, we can attempt an *indirect* proof
- Those are split in two categories:
 - 1. Proofs by contraposition
 - 2. Proofs by contradiction
- We will see examples of both.

Proof by contraposition

• Applicable to all kinds of statements of type:

 $(\forall x \in D)[P(x) \Rightarrow Q(x)]$

- Sometimes, proving the implication in this way can be hard.
- On the other hand, proving its *contrapositive:*

$$(\forall x \in D) [\sim Q(x) \Rightarrow \sim P(x)]$$

might be easier! 😳

•
$$(\forall a \in \mathbb{Z}) [(a^2 even) \Rightarrow (a even)]$$

- $(\forall a \in \mathbb{Z})[(a^2 even) \Rightarrow (a even)]$
- Do we believe this to be true?

- $(\forall a \in \mathbb{Z})[(a^2 even) \Rightarrow (a even)]$
- Do we believe this to be true?

• So we should aim for a proof of the affirmative!

- $(\forall a \in \mathbb{Z})[(a^2 even) \Rightarrow (a even)]$
- Proving this *directly* is somewhat hard
- On the other hand, the **contrapositive**:

$$(\forall a \in \mathbb{Z})[(a \ odd) \Rightarrow (a^2 \ odd)]$$

is much easier!

Proof that $(\forall a \in \mathbb{Z})[(a \ odd) \Rightarrow (a^2 \ odd)]$

- 1. Suppose a is an odd integer.
- 2. Then, $a \equiv 1 \pmod{2}$.
- 3. By algebra, $a^2 \equiv 1^2 \equiv 1 \pmod{2}$.
- 4. Done.

If 3n + 2 is odd, where $n \in \mathbb{Z}$, then n is odd.

If 3n + 2 is odd, where $n \in \mathbb{Z}$, then n is odd.

Let's try this one together.

If $n = a \cdot b$, where $a, b \in \mathbb{N}^{\geq 1}$, then $a \leq \sqrt{n} \text{ OR } b \leq \sqrt{n}$

If $n = a \cdot b$, where $a, b \in \mathbb{N}^{\geq 1}$, then $a \leq \sqrt{n} \text{ OR } b \leq \sqrt{n}$

- The most common type of indirect proof is *proof by contradiction*
- Briefly: We want to prove a fact *a*, so we assume ~ *a* and hope that we reach a contradiction (a falsehood).

- The most common type of indirect proof is *proof by contradiction*
- Briefly: We want to prove a fact *a*, so we assume ~ *a* and hope that we reach a contradiction (a falsehood).

This is a so-called **"conditional world"**: It's a "version" of our world where we assume ~ α.

- The most common type of indirect proof is *proof by contradiction*
- Briefly: We want to prove a fact *a*, so we assume ~ *a* and hope that we reach a contradiction (a falsehood).

We follow some classic direct proof sets, and reach a statement that is a **logical contradiction!** (e.g 1 > 2)

- The most common type of indirect proof is *proof by contradiction*
- Briefly: We want to prove a fact *a*, so we assume ~ *a* and hope that we reach a contradiction (a falsehood).

We follow some classic direct proof sets, and reach a statement that is a **logical contradiction!** (e.g 1 > 2)

This means that this conditional world cannot possibly exist! The only "possible" worlds have a in it.

- The most common type of indirect proof is *proof by contradiction*
- Briefly: We want to prove a fact *a*, so we assume ~ *a* and hope that we reach a contradiction (a falsehood).

We follow some classic direct proof sets, and reach a statement that is a **logical contradiction!** (e.g 1 > 2)

This means that this conditional world cannot possibly exist! The only "possible" worlds have a in it.

- Proof of contradiction is often used in statements that *look obvious*!
- Example: We will prove that there is no greatest integer.

- Proof of contradiction is often used in statements that *look obvious!*
- Example: We will prove that there is no greatest integer.
- Proof:
 - 1. Assume that the statement is false. Then, there is a greatest integer.
 - 2. Call the integer assumed in step 1 *N*.
 - 3. By closure of \mathbb{Z} over addition, we have that $N + 1 \in \mathbb{Z}$.
 - 4. But N + 1 > N.
 - 5. Steps 4 and 1 are a contradiction. Therefore, there does **not** exist a greatest integer.

Your turn!

• Prove that the square root of any irrational is also irrational

1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.

- 1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.
- 2. So $\sqrt{2} = \frac{a}{b}$, $a, b \in \mathbb{Z}$, $b \neq 0$ and a, b do not have common factors.

- 1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.
- 2. So $\sqrt{2} = \frac{a}{b}$, $a, b \in \mathbb{Z}$, $b \neq 0$ and a, b do not have common factors.
- 3. So $a = \sqrt{2} \cdot b \Rightarrow a^2 = 2b^2$ so a^2 is even (1)

- 1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.
- 2. So $\sqrt{2} = \frac{a}{b}$, $a, b \in \mathbb{Z}, b \neq 0$ and a, b do not have common factors.
- 3. So $a = \sqrt{2} \cdot b \Rightarrow a^2 = 2b^2$ so a^2 is even (1)
- 4. By the theorem proved before, this means that *a* is even.

- 1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.
- 2. So $\sqrt{2} = \frac{a}{b}$, $a, b \in \mathbb{Z}$, $b \neq 0$ and a, b do not have common factors.
- 3. So $a = \sqrt{2} \cdot b \Rightarrow a^2 = 2b^2$ so a^2 is even (1)
- 4. By the theorem proved before, this means that *a* is even.
- 5. So a = 2k for some integer k. (2)

- 1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.
- 2. So $\sqrt{2} = \frac{a}{b}$, $a, b \in \mathbb{Z}$, $b \neq 0$ and a, b do not have common factors.
- 3. So $a = \sqrt{2} \cdot b \Rightarrow a^2 = 2b^2$ so a^2 is even (1)
- 4. By the theorem proved before, this means that *a* is even.
- 5. So a = 2k for some integer k. (2)
- 6. Substituting (2) into (1) yields: $(2k)^2 = 2b^2 \Rightarrow b^2 = 2k^2 \Rightarrow$

- 1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.
- 2. So $\sqrt{2} = \frac{a}{b}$, $a, b \in \mathbb{Z}$, $b \neq 0$ and a, b do not have common factors.
- 3. So $a = \sqrt{2} \cdot b \Rightarrow a^2 = 2b^2$ so a^2 is even (1)
- 4. By the theorem proved before, this means that *a* is even.
- 5. So a = 2k for some integer k. (2)
- 6. Substituting (2) into (1) yields: $(2k)^2 = 2b^2 \Rightarrow b^2 = 2k^2 \Rightarrow$
- 7. b^2 is even $\Rightarrow b$ is even by previous theorem!

- 1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.
- 2. So $\sqrt{2} = \frac{a}{b}$, $a, b \in \mathbb{Z}$, $b \neq 0$ and a, b do not have common factors.
- 3. So $a = \sqrt{2} \cdot b \Rightarrow a^2 = 2b^2$ so a^2 is even (1)
- 4. By the theorem proved before, this means that *a* is even.
- 5. So a = 2k for some integer k. (2)
- 6. Substituting (2) into (1) yields: $(2k)^2 = 2b^2 \Rightarrow b^2 = 2k^2 \Rightarrow$
- 7. b^2 is even $\Rightarrow b$ is even by previous theorem!
- 8. So both *a* and *b* are both even, which means that they have common factor of 2.

- 1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.
- 2. So $\sqrt{2} = \frac{a}{b}$, $a, b \in \mathbb{Z}, b \neq 0$ and a, b do not have common factors.
- 3. So $a = \sqrt{2} \cdot b \Rightarrow a^2 = 2b^2$ so a^2 is even (1)
- 4. By the theorem proved before, this means that a is even.
- 5. So a = 2k for some integer k. (2)
- 6. Substituting (2) into (1) yields: $(2k)^2 = 2b^2 \Rightarrow b^2 = 2k^2 \Rightarrow$
- 7. b^2 is even $\Rightarrow b$ is even by previous theorem!
- 8. So both *a* and *b* are both even, which means that they have common factor of 2.
- 9. Contradiction.

Proof of a lemma

• Proof (via contraposition): We prove the contrapositive, i.e

If a^2 is a multiple of 5, then so is a \Leftrightarrow If a is not a multiple of 5, then a^2 isn't one either.

Proof of lemma

• Proof (by contraposition): We prove that:

if a is not a multiple of 5, then a^2 isn't one either.

Proof of lemma

• Proof (by contraposition): We prove that:

if a is not a multiple of 5, then a^2 isn't one either.

1. Suppose that $a \in \mathbb{Z}$ is **not** a multiple of 5.

Proof of lemma

• Proof (by contraposition): We prove that:

if a is not a multiple of 5, then a^2 isn't one either.

- 1. Suppose that $a \in \mathbb{Z}$ is **not** a multiple of 5.
- 2. Then, one of the following has to be the case (all \equiv are mod 5):
 - $a \equiv 1 \Rightarrow a^2 \equiv 1^2 \equiv 1 \not\equiv 0$
 - $a \equiv 2 \Rightarrow a^2 \equiv 4 \equiv 4 \not\equiv 0$
 - $a \equiv 3 \Rightarrow a^2 \equiv 1^2 \equiv 1 \not\equiv 0$
 - $a \equiv 4 \Rightarrow a^2 \equiv 16 \equiv 1 \not\equiv 0$

Adjustment: Proof that $\sqrt{5}$ is irrational

- Let's assume BY WAY OF CONTRADICTION that $\sqrt{5}$ is rational.
- So $\sqrt{5} = \frac{a}{b}$, $a, b \in \mathbb{Z}, b \neq 0$ and a, b do not have common factors.
- So $a = \sqrt{5} \cdot b \Rightarrow a^2 = 5b^2$ so a^2 is a multiple of 5 (1)
- By the previous theorem, this means that *a* is a multiple of 5.
- So a = 5k for some integer k. (2)
- Substituting (2) into (1) yields: $(5k)^2 = 5b^2 \Rightarrow b^2 = 5k^2 \Rightarrow b^2$ is a multiple of $5 \Rightarrow b$ is a multiple of 5 by same theorem
- Since *a* and *b* are both multiples of 5, they have a common factor of 5.
- Contradiction.

Proof of $\sqrt{7} \notin \mathbb{Q}$ with Euclidean Argument

• Why can we **not** use this machinery to prove that $\sqrt{4}$ is irrational (which is wrong anyway)?

- Why can we **not** use this machinery to prove that $\sqrt{4}$ is irrational (which is wrong anyway)?
- Observe that to prove $\sqrt{2}$ irrational, we needed lemma: $x^2 \text{ even} \Rightarrow x$ even

- Why can we **not** use this machinery to prove that $\sqrt{4}$ is irrational (which is wrong anyway)?
- Observe that to prove $\sqrt{2}$ irrational, we needed lemma: x^2 even $\Rightarrow x$ even.
- To prove $\sqrt{3}$ irrational, we need lemma: x^2 mult $3 \Rightarrow x$ mult 3

- Why can we **not** use this machinery to prove that $\sqrt{4}$ is irrational (which is wrong anyway)?
- Observe that to prove $\sqrt{2}$ irrational, we needed lemma: x^2 even $\Rightarrow x$ even.
- To prove $\sqrt{3}$ irrational, we need lemma: x^2 mult $3 \Rightarrow x$ mult 3
- To prove $\sqrt{4}$ irrational, we would need lemma: x^2 mult $4 \Rightarrow x$ mult 4.

- Why can we **not** use this machinery to prove that $\sqrt{4}$ is irrational (which is wrong anyway)?
- Observe that to prove $\sqrt{2}$ irrational, we needed lemma: $x^2 \text{ even} \Rightarrow x$ even.
- To prove $\sqrt{3}$ irrational, we need lemma: x^2 mult $3 \Rightarrow x$ mult 3
- To prove $\sqrt{4}$ irrational, we would need lemma: x^2 mult $4 \Rightarrow x$ mult 4.
- But this is **not** actually true! Counter-example: x = 2

- Please go ahead and find the smallest possible positive factors for the following numbers (excluding the trivial factor 1):
 - 15
 - 22
 - 29
 - 121
 - 1024
 - 1027

- Please go ahead and find the smallest possible positive factors for the following numbers (excluding the trivial factor 1):
 - $15 = 3 \times 5 = 3^1 \times 5^1$
 - $22 = 2^1 \times 11^1$
 - $29 = 29^1$
 - $121 = 11^2$
 - $1024 = 2^{10}$
 - $1027 = 13 \times 79 = 13^1 \times 79^1$

- Please go ahead and find the smallest possible positive factors for the following numbers (excluding the trivial factor 1):
 - $15 = 3 \times 5 = 3^1 \times 5^1$
 - $22 = 2^1 \times 11^1$
 - $29 = 29^1$
 - $121 = 11^2$
 - $1024 = 2^{10}$
 - $1027 = 13 \times 79 = 13^1 \times 79^1$

What do all of these factors have in common?

- Please go ahead and find the smallest possible positive factors for the following numbers (excluding the trivial factor 1):
 - $15 = 3 \times 5 = 3^1 \times 5^1$
 - $22 = 2^1 \times 11^1$
 - $29 = 29^1$
 - $121 = 11^2$
 - $1024 = 2^{10}$
 - $1027 = 13 \times 79 = 13^1 \times 79^1$ ____

What do all of these factors have in common?

They are all primes!

A result

• Every positive integer $n \ge 2$ can be factored into a product of **exclusively** prime numbers

A result

- Every positive integer $n \ge 2$ can be factored into a product of **exclusively** prime numbers
- Moreover, this representation is *unique*, up to re-ordering of the individual factors in the product! For example:
 - $15 = 3^1 \times 5^1 = 5^1 \times 3^1$

•
$$1400 = 2^3 \times 5^2 \times 7^1 = 2^3 \times 7^1 \times 5^2 =$$

= $5^2 \times 2^3 \times 7^1 = 5^2 \times 7^1 \times 2^3 =$
= $7^1 \times 2^3 \times 5^2 = 7^1 \times 5^2 \times 2^3$

Unique Prime Factorization Theorem

• Every number $n \in \mathbb{N}^{\geq 2}$ can be **uniquely** factored into a product of prime numbers p_1, p_2, \dots, p_k like so:

$$n = p_1^{e_1} \cdot p_2^{e_2} \cdot \ldots \cdot p_k^{e_k}, \qquad e_i \in \mathbb{N}^{>0}$$

Unique Prime Factorization Theorem

• Every number $n \in \mathbb{N}^{\geq 2}$ can be **uniquely** factored into a product of prime numbers p_1, p_2, \dots, p_k like so:

$$n = p_1^{e_1} \cdot p_2^{e_2} \cdot \ldots \cdot p_k^{e_k}, \qquad e_i \in \mathbb{N}^{>0}$$

• Proving existence is easy

Unique Prime Factorization Theorem

• Every number $n \in \mathbb{N}^{\geq 2}$ can be **uniquely** factored into a product of prime numbers p_1, p_2, \dots, p_k like so:

$$n = p_1^{e_1} \cdot p_2^{e_2} \cdot \ldots \cdot p_k^{e_k}, \qquad e_i \in \mathbb{N}^{>0}$$

- Proving existence is easy
- Proving uniqueness is harder

Examples of "uniqueness"

- By "uniqueness" we mean that the product is unique up to reordering of the factors $p_i^{e_i}$.
- Examples:
 - $30 = 3^1 \times 2^1 \times 5^1 = 5^1 \times 2^1 \times 3^1$
 - $88 = 2^3 \times 11^1 = 11^1 \times 2^3$
 - $1026 = 2^1 \times 3^3 \times 19^1 = 2^1 \times 19^1 \times 3^3 = 19^1 \times 2^1 \times 3^3 = 3^3 \times 19^1 \times 2^1$

A necessary lemma

Set of primes

• Claim: Let $p \in \mathbf{P}$, $a \in \mathbb{N}$. Then, if $p \mid a$, then $p \nmid (a + 1)$.

A necessary lemma

Set of primes

- Claim: Let $p \in \mathbf{P}$, $a \in \mathbb{N}$. Then, if $p \mid a$, then $p \nmid (a + 1)$.
- Proof:
 - Assume that $p \mid (a + 1)$. Then, this means that $(\exists r_1 \in \mathbb{Z})[a + 1 = p \cdot r_1]$ (I)
 - We already know that $p \mid a \Rightarrow (\exists r_2 \in \mathbb{Z})[a = p \cdot r_2]$ (II)
 - Substituting (II) into (I) yields: $p \cdot r_2 + 1 = p \cdot r_1 \Rightarrow p(r_1 r_2) = 1 \Rightarrow p | 1$ which is a contradiction. Therefore, $p \nmid (a + 1)$.

Infinity of primes

 Assume that the primes are finite. Then, we can list them in ascending order:

 $p_1, p_2, ..., p_n$

Infinity of primes

 Assume that the primes are finite. Then, we can list them in ascending order:

 $p_1, p_2, ..., p_n$

Let's consider the number

$$N = p_1 \cdot p_2 \cdot \ldots \cdot p_n + 1$$

Infinity of primes $N = p_1 \cdot p_2 \cdot ... \cdot p_n + 1$

Clearly, N is bigger than any p_i . We have two cases:

- *i. N* is prime. Contradiction, since *N* is bigger than any prime.
- *ii.* N is composite. This means that N has at least one factor f. Let's take the smallest factor of N, and call it f_{min} . Then, this number is prime (why?) Since f_{min} is prime, it divides $p_1 \cdot p_2 \cdot \ldots \cdot p_n$. By the previous theorem, this means that it cannot possibly divide $p_1 \cdot p_2 \cdot \ldots \cdot p_n + 1 = N$. Contradiction, since we assumed that f_{min} is a factor of N.

Therefore, the primes are not finite.

STOP RECORDING