START

RECORDING

Module 1: Propositional Logic

- The most elementary kind of logic in Computer Science
- Also known as Boolean Logic, by virtue of George Boole (1815-1864)

Propositional Symbols

- The building blocks of propositional logic.
- Think of them as bits or boxes that hold a value of 1 (True) or 0 (False)
- Denoted using a lowercase english letter ($\mathrm{p}, \mathrm{q}, \ldots$, a)

Operations in boolean logic

- There are three basic operations in boolean logic
- Conjunction (AND)
- Disjunction (OR)
- Negation (NOT)
- Other operations can be defined in terms of those three.

Negation (NOT, ~, ᄀ)

p	$\sim p$
\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{F}

Conjunction (^)

p	q	$p \wedge q$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}

Conjunction (^)

p	q	$p \wedge q$		
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}		
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{F}		
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{F}		
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}	\quad	
:---:		Rule of thumb: p and q		
:---				
must be 1				

Fun exercise

- Fill-in the following truth table:

p	q	$p \wedge(\sim q)$
\boldsymbol{F}	\boldsymbol{F}	$?$
\boldsymbol{F}	\boldsymbol{T}	$?$
\boldsymbol{T}	\boldsymbol{F}	$?$
\boldsymbol{T}	\boldsymbol{T}	$?$

Fun exercise

- Fill-in the following truth table:

p	q	$p \wedge(\sim q)$
\boldsymbol{F}	\boldsymbol{F}	
\boldsymbol{F}	\boldsymbol{T}	
\boldsymbol{T}	\boldsymbol{F}	
\boldsymbol{T}	\boldsymbol{T}	

Fun exercise

- Fill-in the following truth table:

p	q	$p \wedge(\sim q)$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	
\boldsymbol{T}	\boldsymbol{F}	
\boldsymbol{T}	\boldsymbol{T}	

Fun exercise

- Fill-in the following truth table:

p	q	$p \wedge(\sim q)$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{F}	
\boldsymbol{T}	\boldsymbol{T}	

Fun exercise

- Fill-in the following truth table:

p	q	$p \wedge(\sim q)$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{T}	

Fun exercise

- Fill-in the following truth table:

p	q	$p \wedge(\sim q)$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{F}

Disjunction

p	q	$p \vee q$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}

Disjunction

p	q	$p \vee q$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}

Rule of thumb: one of p or q must be 1

Fun exercise

- Fill-in the following truth table:

p	q	$p \vee(p \wedge q)$
\boldsymbol{F}	\boldsymbol{F}	$?$
\boldsymbol{F}	\boldsymbol{T}	$?$
\boldsymbol{T}	\boldsymbol{F}	$?$
\boldsymbol{T}	\boldsymbol{T}	$?$

Fun exercise

- Fill-in the following truth table:

p	q	$p \vee(p \wedge q)$
\boldsymbol{F}	\boldsymbol{F}	
\boldsymbol{F}	\boldsymbol{T}	
\boldsymbol{T}	\boldsymbol{F}	
\boldsymbol{T}	\boldsymbol{T}	

Fun exercise

- Fill-in the following truth table:

p	q	$p \vee(p \wedge q)$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	
\boldsymbol{T}	\boldsymbol{F}	
\boldsymbol{T}	\boldsymbol{T}	

Fun exercise

- Fill-in the following truth table:

p	q	$p \vee(p \wedge q)$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{F}	
\boldsymbol{T}	\boldsymbol{T}	

Fun exercise

- Fill-in the following truth table:

p	q	$p \vee(p \wedge q)$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{T}	

Fun exercise

- Fill-in the following truth table:

p	q	$p \vee(p \wedge q)$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}

Fun exercise

- Fill-in the following truth table:

p	q	$p \vee(p \wedge q)$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}

- Anything interesting here?

Fun exercise

- Fill-in the following truth table:

\boldsymbol{p}	q	$p \vee(\boldsymbol{p} \wedge q)$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}

- Anything interesting here?

Implication (\Rightarrow)

- "If-then"

p	q	$p \Rightarrow q$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}

Implication (\Rightarrow)

- "If-then"

p	q	$p \Rightarrow q$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}

Gorslax learns about birds

- Gorslax, an alien from the Andromeda Galaxy, visits planet Earth on a scientific expedition.
- Gorslax's planet has a very strong gravitational field which does not allow for the evolution of aviary life.
- So he starts studying Earth's birds.

Gorslax learns about birds

Gorslax learns about birds

bird	flies	bird \Rightarrow flies
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}

Gorslax learns about birds

Well this thing clearly
 doesn't fly, but it's also not a bird, so I don't care; I still believe that all birds fly!

loird	flies	bird \Rightarrow flies
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}

Gorslax learns about birds

loird	flies	bird \Rightarrow flies
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}

Gorslax learns about birds

Whoops! Here's at least one

bird	flies	bird \Rightarrow flies
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}

Bi-conditional (\Leftrightarrow)

- "If and only if"

p	q	$p \Leftrightarrow q$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}

Practice

- Fill in the following truth tables:

p	$p \Longrightarrow(\sim p)$
\boldsymbol{F}	$?$
\boldsymbol{T}	$?$

p	q	r	$(p \wedge q) \Rightarrow r$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}	$?$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{T}	$?$
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{F}	$?$
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{T}	$?$
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{F}	$?$
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{T}	$?$
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{F}	$?$
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}	$\boldsymbol{?}$

Contradictions / Tautologies

- Examine the statements:
- $p \wedge(\sim p)$
- $p \vee(\sim p)$
-What can you say about those statements?

What if $\mathrm{T}=1$ and False $=0$?

- This is useful when we get to circuits
- What is AND, OR, and NOT?
- NOT = 1-x

x	$\sim x$
\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{F}

x	$1-x$
0	1
1	0

What if $\mathrm{T}=1$ and False $=0$?

- What is AND, OR, NOT?
- $A N D=x y$

x	y	$x \wedge y$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}

x	y	$x y$
0	0	0
0	1	0
1	0	0
1	1	1

What if $\mathrm{T}=1$ and False $=0$?

- What is AND, OR, and NOT?
- $O R=x+y$? NO!

x	y	$x \vee y$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}

x	y	$x+y$
0	0	0
0	1	1
1	0	1
1	1	10

What if $\mathrm{T}=1$ and False $=0$?

- What is AND, OR, and NOT?
- $O R=x+y-x y$

x	y	$x \vee y$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}

x	y	$x+y$	$x+y-\mathrm{xy}$
0	0	0	0
0	1	1	1
1	0	1	1
1	1	10	1

STOP

