START

RECORDING

Relations and Functions
 CMSC250

Relations

Arrow diagrams

- Any subset of $A \times B$ is called a relation from A to B.

Arrow diagrams

- Any subset of $A \times B$ is called a relation from A to B.

$$
R_{1}=\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{4}\right)\right\}
$$

Arrow diagrams

- Any subset of $A \times B$ is called a relation from A to B.

Arrow diagrams

- Any subset of $A \times B$ is called a relation from A to B.

$$
R_{3}=\left\{\left(a_{1}, a_{2}\right),\left(a_{5}, b_{4}\right)\right\}
$$

Is not a relation, since it contains an element ($\left.\left(a_{1}, a_{2}\right)\right)$ which is not in $A \times B$.

Arrow diagrams

- Any subset of $A \times B$ is called a relation from A to B.

Definition

- Let A, B be sets. A relation R from A to B is any subset of $A \times B$.

Examples

$\cdot(<, \mathbb{R} \times \mathbb{R})$

- $\{\ldots,(-1.5,-1.2),(-1.4,-1.2),(\sqrt{2}, \sqrt{3}),(\sqrt{2}, \sqrt{5}), \ldots\}$

Examples

$\cdot(<, \mathbb{R} \times \mathbb{R})$

- $\{\ldots,(-1.5,-1.2),(-1.4,-1.2),(\sqrt{2}, \sqrt{3}),(\sqrt{2}, \sqrt{5}), \ldots\}$
- $(\leq, \mathbb{R} \times \mathbb{R})$
- $\{\ldots,(2,2),(2,2.1),(\sqrt{2}, \sqrt{3}),(\sqrt{2}, \sqrt{5}), \ldots\}$

Examples

- $(<, \mathbb{R} \times \mathbb{R})$
- $\{\ldots,(-1.5,-1.2),(-1.4,-1.2),(\sqrt{2}, \sqrt{3}),(\sqrt{2}, \sqrt{5}), \ldots\}$
- $(\leq, \mathbb{R} \times \mathbb{R})$
- $\{\ldots,(2,2),(2,2.1),(\sqrt{2}, \sqrt{3}),(\sqrt{2}, \sqrt{5}), \ldots\}$
- $(R, \mathbb{R} \times \mathbb{N})$
- $\{(r, n) \mid n$ appears in the decimal expansion of $r\}$
- E.g: $\{\ldots,(\pi, 1),(e, 7),(1 / 3,3), \ldots\}$
- We would formally say that all of the above are elements of the relation R

Reflexivity

- A relation $\mathrm{X} \subseteq A \times A$ is reflexive if

$$
(\forall a \in A)[(a, a) \in X]
$$

Reflexivity

- A relation $\mathrm{X} \subseteq A \times A$ is reflexive if

$$
(\forall a \in A)[(a, a) \in X]
$$

- Examples:
- $(\leq, \mathbb{N} \times \mathbb{N})$ is reflexive, since $(\forall n \in \mathbb{N})[n \leq n]$
- $(<, \mathbb{N} \times \mathbb{N})$ is not reflexive, since $\sim(\forall n \in \mathbb{N})[n<n]$ (in fact, there is no such $n)$
- $(R, \mathbb{N} \times \mathbb{N}$) defined as $\{(x, y) \mid x+y \geq 100\}$ is not reflexive (e.g $10 \in \mathbb{N}$, but $(10,10) \notin R)$)

Symmetry

- A relation $\mathrm{X} \subseteq A \times A$ is symmetric if

$$
\left(\forall a_{1}, a_{2} \in A\right)\left[\left(\left(a_{1}, a_{2}\right) \in X\right) \Rightarrow\left(\left(a_{2}, a_{1}\right) \in X\right)\right]
$$

Symmetry

- A relation $\mathrm{X} \subseteq A \times A$ is symmetric if

$$
\left(\forall a_{1}, a_{2} \in A\right)\left[\left(\left(a_{1}, a_{2}\right) \in X\right) \Rightarrow\left(\left(a_{2}, a_{1}\right) \in X\right)\right]
$$

- Examples:
- $(\leq, \mathbb{N} \times \mathbb{N})$ is not symmetric since $4 \leq 5$ but $\sim(5 \leq 4)$
- $(<, \mathbb{N} \times \mathbb{N})$ is not symmetric (see above)
- $(R, \mathbb{N} \times \mathbb{N})$ defined as $\{(x, y) \mid x+y \geq 100\}$ is symmetric since

$$
(x+y \geq 100) \Rightarrow(y+x \geq 100)
$$

Transitivity

- A relation $\mathrm{X} \subseteq A \times A$ is transitive if
$\left.\left(\forall a_{1}, a_{2}, a_{3} \in A\right)\left[\left(\left(a_{1}, a_{2}\right) \in X\right) \wedge\left(\left(a_{2}, a_{3}\right) \in X\right) \Rightarrow\left(a_{1}, a_{3}\right) \in X\right)\right]$

Transitivity

- A relation $\mathrm{X} \subseteq A \times A$ is transitive if

$$
\left.\left(\forall a_{1}, a_{2}, a_{3} \in A\right)\left[\left(\left(a_{1}, a_{2}\right) \in X\right) \wedge\left(\left(a_{2}, a_{3}\right) \in X\right) \Rightarrow\left(a_{1}, a_{3}\right) \in X\right)\right]
$$

- $(\leq, \mathbb{N} \times \mathbb{N})$ is transitive since $((x \leq y) \wedge(y \leq z)) \Rightarrow(x \leq z)$
$\cdot(<, \mathbb{N} \times \mathbb{N})$ is transitive (see above)
$\cdot(R, \mathbb{N} \times \mathbb{N})$ defined as $\{(x, y) \mid x+y \geq 100\}$???

Transitivity

- A relation $\mathrm{X} \subseteq A \times A$ is transitive if

$$
\left.\left(\forall a_{1}, a_{2}, a_{3} \in A\right)\left[\left(\left(a_{1}, a_{2}\right) \in X\right) \wedge\left(\left(a_{2}, a_{3}\right) \in X\right) \Rightarrow\left(a_{1}, a_{3}\right) \in X\right)\right]
$$

- $(\leq, \mathbb{N} \times \mathbb{N})$ is transitive since $((x \leq y) \wedge(y \leq z)) \Rightarrow(x \leq z)$
- $(<, \mathbb{N} \times \mathbb{N})$ is transitive (see above)
- $(R, \mathbb{N} \times \mathbb{N})$ defined as $\{(x, y) \mid x+y \geq 100\}$ is not transitive since (counter-example):

$$
((1,100) \in R) \wedge((100,5) \in R) \text {, but }(1,5) \notin R
$$

Functions

Functions

- Most basic representation: Arrow Diagrams

Functions

- Most basic representation: Arrow Diagrams

A is called the domain and B is

Functions

- Most basic representation: Arrow Diagrams
A is called the domain and B is

Example 1

- Is this a function?

Example 1

- Is this a function?

- Domain: $\{0,1,2,3,4\}$
- Co-domain: $\{0,1,4\}$
- Formula (that we came up with): $f(x)=x^{2} \bmod 5$

Just because two 'x's map to the same 'y' doesn't make this a non-function... it just makes it a non-injective (not "1-1") function

Example 2

- Is this a function?

Example 2

- Is this a function?

- Every element of the domain should map to some co-domain element!

Example 2

- Is this a function?

Yes

No

Example 2

- Is this a function?

Yes

Fails the
"vertical line" test (2 different `y's mapped to by the same ' x ')

Example 3

- Is this a function?

Yes

$$
f: \mathbb{N} \mapsto \mathbb{N} \text {, and } f(x)=x / 2
$$

Example 3

- Is this a function?

Yes

No

$$
f: \mathbb{N} \mapsto \mathbb{N}, \text { and } f(x)=x / 2
$$

- For any odd selection of $x \in \mathbb{N}$, there is no $x / 2 \in \mathbb{N}$!
- $f(4)=2 \in \mathbb{N}$, but $f(5)=2.5 \notin \mathbb{N}$

Example 3

- Is this a function?

Yes

$$
f: \mathbb{N} \mapsto \mathbb{N} \text {, and } f(x)=x / 2
$$

- For any odd selection of $x \in \mathbb{N}$, there is no $x / 2 \in \mathbb{N}$!
- $f(4)=2 \in \mathbb{N}$, but $f(5)=2.5 \notin \mathbb{N}$
- What about this?

$$
f: \mathbb{N} \mapsto \mathbb{Q}, \text { and } f(x)=x / 2
$$

Example 3

- Is this a function?

$$
f: \mathbb{N} \mapsto \mathbb{N} \text {, and } f(x)=x / 2
$$

- For any odd selection of $x \in \mathbb{N}$, there is no $x / 2 \in \mathbb{N}$!
- $f(4)=2 \in \mathbb{N}$, but $f(5)=2.5 \notin \mathbb{N}$
- What about this?

$$
f: \mathbb{N} \mapsto \mathbb{Q}, \text { and } f(x)=x / 2
$$

Example 4

- Are the following valid functions?

Example 4

- Are the following valid functions?

Yes
No

Example 4

Yes

No

(As long as the
 domain is $\mathbb{R}^{>0}$!!)

Log function

Example 5

- Are the following valid functions?

Yes

No

Example 5

- Are the following valid functions?

Fails the
"vertical line" test

Example 5

- Are the following valid functions?

Yes

No

Example 5

- Are the following valid functions?

Yes

No

Surjective functions

- A function $f: X \mapsto Y$ is called surjective (or onto) iff
$(\forall y \in Y, \exists x \in X)[f(x)=y]$

Surjective functions

- A function $f: X \mapsto Y$ is called surjective (or onto) iff

$$
(\forall y \in Y, \exists x \in X)[f(x)=y]
$$

- Intuitively: $f^{\prime} s$ co-domain is "full" with pointer heads

Surjective functions

- A function $f: X \mapsto Y$ is called surjective (or onto) iff

$$
(\forall y \in Y, \exists x \in X)[f(x)=y]
$$

- Intuitively: $f^{\prime} s$ co-domain is "full" with pointer heads
- Mnemonic rule to remember the name "surjective": in French, "sur" means "above", "on", or "onto".

Surjective functions

- A function $f: X \mapsto Y$ is called surjective (or onto) iff

$$
(\forall y \in Y, \exists x \in X)[f(x)=y]
$$

- Intuitively: $f^{\prime} s$ co-domain is "full" with pointer heads
- Mnemonic rule to remember the name "surjective": in French, "sur" means "above", "on", or "onto".

Quiz on surjectivity

- Is $f(x)=x^{2}$ surjective, given the following

No

 domain / co-domain pairs?
Quiz on surjectivity

- Is $f(x)=x^{2}$ surjective, given the following domain / co-domain pairs?
a) $D=\mathbb{R}, C=\mathbb{R}$

Quiz on surjectivity

- Is $f(x)=x^{2}$ surjective, given the following domain / co-domain pairs?
a) $D=\mathbb{R}, C=\mathbb{R}$ No (e.g-1 is not mapped to)

Quiz on surjectivity

- Is $f(x)=x^{2}$ surjective, given the following domain / co-domain pairs?
a) $D=\mathbb{R}, C=\mathbb{R}$ No (e.g-1 is not mapped to)
b) $D=\mathbb{R}, C=\mathbb{R}^{\geq 0}$

Quiz on surjectivity

- Is $f(x)=x^{2}$ surjective, given the following domain / co-domain pairs?
a) $D=\mathbb{R}, C=\mathbb{R}$ No (e.g-1 is not mapped to)
b) $D=\mathbb{R}, C=\mathbb{R}^{\geq 0}$ Yes

Quiz on surjectivity

- Is $f(x)=x^{2}$ surjective, given the following domain / co-domain pairs?
a) $D=\mathbb{R}, C=\mathbb{R}$ No (e.g-1 is not mapped to)
b) $D=\mathbb{R}, C=\mathbb{R}^{\geq 0}$ Yes
c) $D=\mathbb{N}, C=S Q U A R E S$

Quiz on surjectivity

- Is $f(x)=x^{2}$ surjective, given the following domain / co-domain pairs?
a) $D=\mathbb{R}, C=\mathbb{R}$ No (e.g-1 is not mapped to)
b) $D=\mathbb{R}, C=\mathbb{R}^{\geq 0}$ Yes
c) $D=\mathbb{N}, C=S Q U A R E S$ Yes

Injective functions

- A function $f: X \mapsto Y$ is called injective (or 1-1) iff

$$
\left(\forall x_{1}, x_{2} \in X\right)\left[\left(f\left(x_{1}\right)=f\left(x_{2}\right)\right) \Rightarrow\left(x_{1}=x_{2}\right)\right]
$$

- Intuitively: Every element of the co-domain is mapped to by at most one element of the domain.

Injective functions

- A function $f: X \mapsto Y$ is called injective (or 1-1) iff

$$
\left(\forall x_{1}, x_{2} \in X\right)\left[\left(f\left(x_{1}\right)=f\left(x_{2}\right)\right) \Rightarrow\left(x_{1}=x_{2}\right)\right]
$$

- Intuitively: Every element of the co-domain is mapped to by at most one element of the domain.
- Why "at most one" and not exactly one?

Injective functions

- A function $f: X \mapsto Y$ is called injective (or 1-1) iff

$$
\left(\forall x_{1}, x_{2} \in X\right)\left[\left(f\left(x_{1}\right)=f\left(x_{2}\right)\right) \Rightarrow\left(x_{1}=x_{2}\right)\right]
$$

- Intuitively: Every element of the co-domain is mapped to by at most one element of the domain.
- Why at most one and not exactly one?
- Because 1-1 but not onto functions are possible!

Quiz on injectivity

- Is $f(x)=x^{2}$ injective, given the following domain / co-domain pairs?

Quiz on injectivity

- Is $f(x)=x^{2}$ injective, given the following domain / co-domain pairs?
a) $D=\mathbb{R}, C=\mathbb{R}$:

Quiz on injectivity

- Is $f(x)=x^{2}$ injective, given the following
 domain / co-domain pairs?
a) $D=\mathbb{R}, C=\mathbb{R}$: Non-Injective! (e.g $\left.(-3)^{2}=3^{2}=9\right)$

Quiz on injectivity

- Is $f(x)=x^{2}$ injective, given the following domain / co-domain pairs?
a) $D=\mathbb{R}, C=\mathbb{R}$: Non-Injective! (e.g $\left.(-3)^{2}=3^{2}=9\right)$
b) $D=\mathbb{R}, C=\mathbb{R}^{\geq 0}$:

Quiz on injectivity

- Is $f(x)=x^{2}$ injective, given the following domain / co-domain pairs?
a) $D=\mathbb{R}, C=\mathbb{R}$: Non-Injective! (e.g $\left.(-3)^{2}=3^{2}=9\right)$
b) $D=\mathbb{R}, C=\mathbb{R}^{\geq 0}$: Non-Injective! (same example works)

Quiz on injectivity

- Is $f(x)=x^{2}$ injective, given the following

Yes

No domain / co-domain pairs?
a) $D=\mathbb{R}, C=\mathbb{R}$: Non-Injective! (e.g $\left.(-3)^{2}=3^{2}=9\right)$
b) $D=\mathbb{R}, C=\mathbb{R}^{\geq 0}$: Non-Injective! (same example works)
c) $D=\mathbb{Z}, C=S Q U A R E S$:

Quiz on injectivity

- Is $f(x)=x^{2}$ injective, given the following domain / co-domain pairs?
a) $D=\mathbb{R}, C=\mathbb{R}$: Non-Injective! (e.g $\left.(-3)^{2}=3^{2}=9\right)$
b) $D=\mathbb{R}, C=\mathbb{R}^{\geq 0}$: Non-Injective! (same example works)
c) $D=\mathbb{Z}, C=S Q U A R E S$: Non-Injective! (same example works)

Quiz on injectivity

- Is $f(x)=x^{2}$ injective, given the following

Yes

No domain / co-domain pairs?
a) $D=\mathbb{R}, C=\mathbb{R}$: Non-Injective! $\left(e . g(-3)^{2}=3^{2}=9\right)$
b) $D=\mathbb{R}, C=\mathbb{R}^{\geq 0}$: Non-Injective! (same example works)
c) $D=\mathbb{Z}, C=S Q U A R E S$: Non-Injective! (same example works)

- Can this function ever be injective?

Quiz on injectivity

- Is $f(x)=x^{2}$ injective, given the following

Yes

No domain / co-domain pairs?
a) $D=\mathbb{R}, C=\mathbb{R}$: Non-Injective! (e.g $\left.(-3)^{2}=3^{2}=9\right)$
b) $D=\mathbb{R}, C=\mathbb{R}^{\geq 0}$: Non-Injective! (same example works)
c) $D=\mathbb{Z}, C=S Q U A R E S$: Non-Injective! (same example works)

- Can this function ever be injective?
- Yes. Pick $D=\mathbb{N}, C=S Q U A R E S$

Making functions onto or 1-1

- To make a function onto, we need to make the co-domain smaller.
- To make a function 1-1, we need to make the domain smaller.

Bijective functions

- A function $f: X \mapsto Y$ is called bijective (or a bijection, or a 11 correspondence) iff it is both surjective and injective.
- We will try to avoid using the term "1-1 correspondence" (some books uses it) since it can confuse us with the notion of an injective (or 1-1) function.

Quiz on bijections

Quiz on bijections

- Are the following functions bijections? (In all examples, $C=\mathbb{R}$)

No

Quiz on bijections

- Are the following functions bijections? \square (In all examples, $C=\mathbb{R}$)

1. $f(x)=|x|, x \in \mathbb{R}$

Quiz on bijections

- Are the following functions bijections?

1. $f(x)=|x|, x \in \mathbb{R}$ No

Quiz on bijections

- Are the following functions bijections? \square (In all examples, $C=\mathbb{R}$)

1. $f(x)=|x|, x \in \mathbb{R}$
2. $f(x)=a \cdot x+b,(\forall a, x, b \in \mathbb{R})$

Quiz on bijections

- Are the following functions bijections?
 (In all examples, $C=\mathbb{R}$)

1. $f(x)=|x|, x \in \mathbb{R}$ No
2. $f(x)=a \cdot x+b,(\forall a, x, b \in \mathbb{R})$ No

For $\mathrm{a}=0$, the graph of the function fails the "horizontal line test"!

Quiz on bijections

- Are the following functions bijections? \square (In all examples, $C=\mathbb{R}$)

1. $f(x)=|x|, x \in \mathbb{R}$ No
2. $f(x)=a \cdot x+b,(\forall a, x, b \in \mathbb{R})$ No
3. $g(x)=a \cdot x^{2}, a, x \in \mathbb{R}, a>0$

Quiz on bijections

- Are the following functions bijections? (In all examples, $C=\mathbb{R}$)

1. $f(x)=|x|, x \in \mathbb{R}$ No
2. $f(x)=a \cdot x+b,(\forall a, x, b \in \mathbb{R})$ No
3. $g(x)=a \cdot x^{2}, a, x \in \mathbb{R}, a>0$ No

Quiz on bijections

- Are the following functions bijections? \square (In all examples, $C=\mathbb{R}$)

1. $f(x)=|x|, x \in \mathbb{R}$ No
2. $f(x)=a \cdot x+b,(\forall a, x, b \in \mathbb{R})$ No
3. $g(x)=a \cdot x^{2}, a, x \in \mathbb{R}, a>0$ No
4. $h(n)=4 n-1, n \in \mathbb{Z}$

Quiz on bijections

- Are the following functions bijections? (In all examples, $C=\mathbb{R}$)

1. $f(x)=|x|, x \in \mathbb{R}$ No
2. $f(x)=a \cdot x+b,(\forall a, x, b \in \mathbb{R})$ No
3. $g(x)=a \cdot x^{2}, a, x \in \mathbb{R}, a>0$ No
4. $h(n)=4 n-1, n \in \mathbb{Z}$ No

Yes

Non-surjective! Set $h(n)=y$ and solve for n :

$$
4 n-1=y \Rightarrow n=\frac{y+1}{4}
$$

There are infinitely many choices of y for which $n \notin \mathbb{Z}$!

Quiz on bijections

- Are the following functions bijections? (In all examples, $C=\mathbb{R}$)

1. $f(x)=|x|, x \in \mathbb{R}$ No
2. $f(x)=a \cdot x+b,(\forall a, x, b \in \mathbb{R})$ No
3. $g(x)=a \cdot x^{2}, a, x \in \mathbb{R}, a>0$ No
4. $h(n)=4 n-1, n \in \mathbb{Z}$ No
5. $h(x)=4 x-1, x \in \mathbb{R}$

Quiz on bijections

- Are the following functions bijections? (In all examples, $C=\mathbb{R}$)

1. $f(x)=|x|, x \in \mathbb{R}$ No
2. $f(x)=a \cdot x+b,(\forall a, x, b \in \mathbb{R})$ No
3. $g(x)=a \cdot x^{2}, a, x \in \mathbb{R}, a>0$ No
4. $h(n)=4 n-1, n \in \mathbb{Z}$ No
5. $h(x)=4 x-1, x \in \mathbb{R}$ Yes

Yes

No

Surjective and injective! Surjective, since, if we set $h(n)=y$ and solve for n :

$$
4 n-1=y \Rightarrow n=\frac{y+1}{4}
$$

For every real y, there's always a real solution n. Injective, since it's of the form of (2) with $a \neq 0$.

Functions in history

- Pre-modern views:

Functions in history

- Pre-modern view:

1. Leibniz: Limited to algebraic or transcendental functions (like sin, cos, etc)

Functions in history

- Pre-modern view:

1. Leibniz: Limited to algebraic or transcendental functions (like sin, cos, etc)
2. Euler: An expression or formula.

Functions in history

- Pre-modern view:

1. Leibniz: Limited to algebraic or transcendental functions (like \sin , \cos, etc)

Gottfried Wilhelm Leibniz
2. Euler: An expression or formula.
3. Also Euler: If x changes "a little", so should $f(x)$.

Leonard Euler

Functions in history

- Pre-modern view:

1. Leibniz: Limited to algebraic or transcendental functions (like sin, cos, etc)
2. Euler: An expression or formula.
3. Also Euler: If x changes "a little", so should $f(x)$.

- In general, people considered "functions" to only be differentiable maps from \mathbb{R} to \mathbb{R}.
- The reason for the restriction because of the tight coupling of math and physics at that time: a "function" was something that could come up in nature.

Functions in history

- The view began to change around the era of Fourier.
- While studying heat, Fourier found out that the following function is discontinuous:

$$
\begin{gathered}
f(x, y, z, t)= \\
\text { at time } t .
\end{gathered}
$$

- Lighting a match at ($0,0,0$) introduces a discontinuity in the function.

Functions in history

- For a while people tried to extend the notion of function.
- Charles Hermite: ""I turn with terror and horror from this lamentable scourge of continuous functions with no derivatives."

Charles Hermite, pictured here turning away with terror and horror from the lamentable scourge of continuous functions with no derivatives.

Modern View

- Owed primarily to Dirichlet and Lobachevsky.
- According to this view, any correspondence is a function.

Emanuel Dirichlet

Nicolai Lobachevsky

STOP

