START

RECORDING

Sets \& Quantifiers

CMSC250

What is a set?

- A set is a collection of distinct objects.
- We use the notation $x \in S$ to say that S contains x .

S

- We'd like to know if $x \in S$ fast!
- Unless explicitly specified otherwise, sets are unordered.

What is a set?

- A set is a collection of distinct objects.
- We use the notation $x \in S$ to say that S contains x .
- We'd like to know if $x \in S$ fast!
- Unless explicitly specified otherwise, sets are unordered.
- Given the last two requirements, what's the best possible data structure to implement a set in memory?

S

What is a set?

- A set is a collection of distinct objects.
- We use the notation $x \in S$ to say that S contains x .
- We'd like to know if $x \in S$ fast!
- Unless explicitly specified otherwise, sets are unordered.
- Given the last two requirements, what's the best possible data structure to implement a set in memory?

Elementary number sets

- \mathbb{N} : the natural numbers
$\cdot \mathbb{N}=\{0,1,2,3, \ldots$.$\} . In our class, 0 \in \mathbb{N}$!
- \mathbb{Z} : the integers
$\cdot \mathbb{Z}=\{\ldots-3,-2,-1,0,1,2,3, \ldots\}$
- \mathbb{Q} : the rationals
- $\mathbb{Q}=\left\{\frac{a}{b},(a \in \mathbb{Z}) \wedge(b \in \mathbb{Z}) \wedge(b \neq 0)\right.$
- Any number that can be written as a ratio of integers!
- \mathbb{R} : the reals
- This will typically be our "upper limit" in 250.
- That is, we don't usually care about \mathbb{C}, the set of complex numbers

Fill those in!

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}
0	\square	\square	\square	\square
-1	\square	\square	\square	\square
$1 / 2$	\square	\square	\square	\square
$-1 / 2$	\square	\square	\square	\square
$0.333333 \ldots$	\square	\square	\square	\square
$0.33333 \ldots / 0.1111111 \ldots$	\square	\square	\square	\square
π	\square	\square	\square	\square
i, such that $i^{2}=-1$	\square	\square	\square	\square

Fill those in!

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}
0	\square	\square	\square	\square
-1	\square	\square	\square	\square
$1 / 2$	\square	\square	\square	\square
$-1 / 2$	\square	\square	\square	\square
0.333333	\square	\square	\square	\square
$0.33333 .1 / 1111111 . \ldots$	\square	\square	\square	\square
i, such that $i^{2}=-1$	\square	\square	\square	\square
	\square	\square	\square	\square

Fill those in!

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}
0	\square	\square	\square	\square
-1	\square	\square	\square	\square
$1 / 2$	\square	\square	\square	\square
$-1 / 2$	\square	\square	\square	\square
0.333333	\square	\square	\square	\square
$0.33333 .1 / 1111111 \ldots$	\square	\square	\square	\square
i, such that $i^{2}=-1$	\square	\square	\square	\square
	\square	\square	\square	\square

Fill those in!

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}
0	\square	\square	\square	\square
-1	\square	\square	\square	\square
$1 / 2$	\square	\square	\square	\square
$-1 / 2$	\square	\square	\square	\square
0.333333	\square	\square	\square	\square
$0.33333 .1 / 1111111 \ldots$	\square	\square	\square	\square
i, such that $i^{2}=-1$	\square	\square	\square	\square
	\square	\square	\square	\square

Fill those in!

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}
0	\square	\square	\square	\square
-1	\square	\square	\square	\square
$1 / 2$	\square	\square	\square	\square
$-1 / 2$	\square	\square	\square	\square
0.333333	\square	\square	\square	\square
$0.33333 .1 / 1111111 \ldots$	\square	\square	\square	\square
i, such that $i^{2}=-1$	\square	\square	\square	\square
	\square	\square	\square	\square

Fill those in!

	N	\mathbb{Z}	Q	\mathbb{R}
0	\square	\square	\square	\square
-1	\square	\square	\square	\square
1/2	\square	\square	\square	\square
-1/2	\square	\square	\square	\square
0.333333.	\square	\square	\square	\square
${ }^{0.33333 . \%} / 0.11111111$.	\square	\square	\square	\square
π	\square	\square	\square	\square
i, such that $i^{2}=-1$	\square	\square	\square	\square

Fill those in!

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}
0	\square	\square	\boldsymbol{Q}	\boldsymbol{Q}
-1	\square	\square	\square	\square
$1 / 2$	\square	\square	\square	\square
$-1 / 2$	\square	\square	\square	\square
0.333333	\square	\square	\square	\square
$0.33333 .1 / 1111111 . \ldots$	\square	\square	\square	\square
i, such that $i^{2}=-1$	\square	\square	\square	\square

Fill those in!

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}
0	\square	\square	\boldsymbol{Q}	$\boldsymbol{\square}$
-1	\square	\square	\square	\square
$1 / 2$	\square	\square	\square	\square
$-1 / 2$	\square	\square	\square	\square
$0.33333 . \ldots$	\square	\square	\square	\square
$0.33333 .1 / 1111111 .$.	\square	\square	\square	\square
i, such that $i^{2}=-1$	\square	\square	\square	\square

Fill those in!

	N	\mathbb{Z}	Q	\mathbb{R}
0	\square	\square	\square	\square
-1	\square	\square	\square	\square
1/2	\square	\square	\square	\square
-1/2	\square	\square	\square	\square
0.333333 .	\square	\square	\square	■
${ }^{0.33333 . \% . \% .1111111 . . . ~}$	■	■	-	■
π	\square	\square	\square	■
i, such that $i^{2}=-1$	\square	\square	\square	\square

Not even

Venn Diagrams

Venn Diagrams

- U is the Universal Domain: a set that we imagine holds every conceivable element.
- When talking about sets of numbers, U is usually \mathbb{R}, the reals.

"There exists" (\exists)

- The symbol \exists (LaTeX: lexists) is read "There exists".
- Examples:
- $(\exists x \in \mathbb{R})[8 x=1]$

"There exists" (\exists)

- The symbol \exists (LaTeX: lexists) is read "There exists".
- Examples:
- $(\exists x \in \mathbb{R})[8 x=1]$ True

"There exists" (\exists)

- The symbol \exists (LaTeX: lexists) is read "There exists".
- Examples:
- $(\exists x \in \mathbb{R})[8 x=1]$ True
- $(\exists n \in \mathbb{Z})\left[n^{2}=-1\right]$

"There exists" (\exists)

- The symbol \exists (LaTeX: lexists) is read "There exists".
- Examples:
- $(\exists x \in \mathbb{R})[8 x=1]$ True
- $(\exists n \in \mathbb{Z})\left[n^{2}=-1\right]$ False

"There exists" (\exists)

- The symbol \exists (LaTeX: |exists) is read "There exists".
- Examples:
- $(\exists x \in \mathbb{R})[8 x=1]$ True
- $(\exists n \in \mathbb{Z})\left[n^{2}=-1\right]$ False
- Is there a domain D where $(\exists n \in D)\left[n^{2}=-1\right]$ is true?

Something else

"There exists" (\exists)

- The symbol \exists (LaTeX: |exists) is read "There exists".
- Examples:
- $(\exists x \in \mathbb{R})[8 x=1]$ True
- $(\exists n \in \mathbb{Z})\left[n^{2}=-1\right]$ False
- Is there a domain D where $(\exists n \in D)\left[n^{2}=-1\right]$ is true?

The complex numbers \mathbb{C}

"For all"

- The symbol \forall (LaTeX: Vforall) is read "for all".
- Examples:
$\cdot(\forall x \in \mathbb{N})[((x>2) \wedge(x$ is prime $)) \Rightarrow(x$ is odd $)]$

"For all"

- The symbol \forall (LaTeX: Vforall) is read "for all".
- Examples:
$\cdot(\forall x \in \mathbb{N})[((x>2) \wedge(x$ is prime $)) \Rightarrow(x$ is odd $)]$ True

"For all"

- The symbol \forall is read "for all".
- Examples:
$\cdot(\forall x \in \mathbb{N})[((x>2) \wedge(x$ is prime $)) \Rightarrow(x$ is odd $)]$ True
- $(\forall n \in \mathbb{Z})\left[n^{2} \geq 0\right]$

"For all"

- The symbol \forall is read "for all".
- Examples:
$\cdot(\forall x \in \mathbb{N})[((x>2) \wedge(x$ is prime $)) \Rightarrow(x$ is odd $)]$ True
- $(\forall n \in \mathbb{Z})\left[n^{2} \geq 0\right]$ True

"For all"

- Let D be the set of all students in this class who are over 8 feet tall.
- $(\forall x \in D)[x$ has perfect attendance so far!]

False

```
Something else
```


"For all"

- Let D be the set of all students in this class who are over 8 feet tall.
- $(\forall x \in D)[x$ has perfect attendance so far!]

- If disagree, need to find $x \in D$ who missed a class
- Called vacuously true!

Nesting quantifiers

- $(\exists x \in \mathbb{N})(\exists y \in \mathbb{N})[x+2 y=3 x+y=4]$

Nesting quantifiers

- $(\exists x \in \mathbb{N})(\exists y \in \mathbb{N})[x+2 y=3 x+y=4]$ False

Nesting quantifiers

- $(\exists x \in \mathbb{N})(\exists y \in \mathbb{N})[x+2 y=3 x+y=4]$ False - $(\exists x \in \mathbb{Q})(\exists y \in \mathbb{Q})[x+2 y=3 x+y=4]$

Nesting quantifiers

- $(\exists x \in \mathbb{N})(\exists y \in \mathbb{N})[x+2 y=3 x+y=4]$ False
- $(\exists x \in \mathbb{Q})(\exists y \in \mathbb{Q})[x+2 y=3 x+y=4]$

True, $x=\frac{4}{5}, y=\frac{8}{5}$

Nesting quantifiers

- $(\exists x \in \mathbb{N})(\exists y \in \mathbb{N})[x+2 y=3 x+y=4]$ False
- $(\exists x \in \mathbb{Q})(\exists y \in \mathbb{Q})[x+2 y=3 x+y=4]$

$$
\text { True, } x=\frac{4}{5}, y=\frac{8}{5}
$$

- Common abbreviation: $(\exists x, y \in D)[\ldots]$
- Generally: $\left(\exists x_{1}, x_{2}, \ldots, x_{n} \in D\right)[\ldots]$

Alternating nested quantifiers

- Notice the differences between the following:
- $(\forall x \in \mathbb{N})(\exists y \in \mathbb{N})[x<y]$
- $(\exists x \in \mathbb{N})(\forall y \in \mathbb{N})[x<y]$

Alternating nested quantifiers

- Notice the differences between the following:
- $(\forall x \in \mathbb{N})(\exists y \in \mathbb{N})[x<y]$ True (\mathbb{N} unbounded from above)
- $(\exists x \in \mathbb{N})(\forall y \in \mathbb{N})[x<y]$ False (\mathbb{N} bounded from below)
- WHEN QUANTIFIERS ARE DIFFERENT, THEIR ORDER MATTERS!!!!!!!

Fill this in!

Statement	True	False
$(\exists n \in \mathbb{N})[n+n=0]$	\bigcirc	\bigcirc
$(\exists n \in \mathbb{N})[n+n=1]$	\bigcirc	\bigcirc
$(\exists n \in \mathbb{Z})[n+n=1]$	\bigcirc	\bigcirc
$(\exists x, y \in \mathbb{Z})[x+y=1]$	\bigcirc	\bigcirc
$(\exists x \in \mathbb{R})[x(x+1)=-1]$	\bigcirc	\bigcirc
$(\forall x, y, z \in \mathbb{R})\left[\left((x<y<z) \Rightarrow\left(x^{2}<y^{2}<z^{2}\right)\right]\right.$	\bigcirc	\bigcirc
$(\forall x, y, z \in \mathbb{R})\left[\left((x<y<z) \Rightarrow\left(x^{3}<y^{3}<z^{3}\right)\right]\right.$	\bigcirc	\bigcirc
$(\forall x, y \in \mathbb{N})(\exists z \in \mathbb{Q})[(x<y) \Rightarrow(x<z<y)]$	\bigcirc	\bigcirc

Fill this in!

Statement	True	False
$(\exists n \in \mathbb{N})[n+n=0]$		\bigcirc
$(\exists n \in \mathbb{N})[n+n=1]$	\bigcirc	\bigcirc
$(\exists n \in \mathbb{Z})[n+n=1]$	\bigcirc	\bigcirc
$(\exists x, y \in \mathbb{Z})[x+y=1]$	\bigcirc	\bigcirc
$(\exists x \in \mathbb{R})[x(x+1)=-1]$	\bigcirc	\bigcirc
$(\forall x, y, z \in \mathbb{R})\left[\left((x<y<z) \Rightarrow\left(x^{2}<y^{2}<z^{2}\right)\right]\right.$	\bigcirc	\bigcirc
$(\forall x, y, z \in \mathbb{R})\left[\left((x<y<z) \Rightarrow\left(x^{3}<y^{3}<z^{3}\right)\right]\right.$	\bigcirc	\bigcirc
$(\forall x, y \in \mathbb{N})(\exists z \in \mathbb{Q})[(x<y) \Rightarrow(x<z<y)]$	\bigcirc	\bigcirc

Fill this in!

Statement	True	False
$(\exists n \in \mathbb{N})[n+n=0]$		\bigcirc
$(\exists n \in \mathbb{N})[n+n=1]$	\bigcirc	\bigcirc
$(\exists n \in \mathbb{Z})[n+n=1]$	\bigcirc	\bigcirc
$(\exists x, y \in \mathbb{Z})[x+y=1]$	\bigcirc	\bigcirc
$(\exists x \in \mathbb{R})[x(x+1)=-1]$	\bigcirc	\bigcirc
$\neq \mathbb{N}$		
	\bigcirc	\bigcirc
	\bigcirc	\bigcirc
$(\forall x, y \in \mathbb{N})(\exists z \in \mathbb{Q})[(x<y) \Rightarrow(x<z<y)]$	\bigcirc	\bigcirc

Fill this in!

Statement	True	False	
$(\exists n \in \mathbb{N})[n+n=0]$	-	\bigcirc	$n=0$
$(\exists n \in \mathbb{N})[n+n=1]$	\bigcirc	\bigcirc	
$(\exists n \in \mathbb{Z})[n+n=1]$	\bigcirc	\bigcirc	Similarl, $\frac{1}{2} \notin \mathbb{Z}$
$(\exists x, y \in \mathbb{Z})[x+y=1]$	\bigcirc	\bigcirc	
$(\exists x \in \mathbb{R})[x(x+1)=-1]$	\bigcirc	\bigcirc	
$(\forall x, y, z \in \mathbb{R})\left[\left((x<y<z) \Rightarrow\left(x^{2}<y^{2}<z^{2}\right)\right]\right.$	\bigcirc	\bigcirc	
$(\forall x, y, z \in \mathbb{R})\left[\left((x<y<z) \Rightarrow\left(x^{3}<y^{3}<z^{3}\right)\right]\right.$	\bigcirc	\bigcirc	
$(\forall x, y \in \mathbb{N})(\exists z \in \mathbb{Q})[(x<y) \Rightarrow(x<z<y)]$	\bigcirc	\bigcirc	

Fill this in!

Statement	True	False	$n=0$
$(\exists n \in \mathbb{N})[n+n=0]$	-	\bigcirc	
$(\exists n \in \mathbb{N})[n+n=1]$	\bigcirc	\bigcirc	$2 n=1 \Rightarrow n=$
$(\exists n \in \mathbb{Z})[n+n=1]$	\bigcirc	\bigcirc	Similarly, $\frac{1}{2} \notin \mathbb{Z}$
$(\exists x, y \in \mathbb{Z})[x+y=1]$	-	\bigcirc	$\begin{aligned} & x=0, y=1 \text { or } \\ & x=-1, y=2, \text { or... } \end{aligned}$
$(\exists x \in \mathbb{R})[x(x+1)=-1]$	\bigcirc	\bigcirc	
$(\forall x, y, z \in \mathbb{R})\left[\left((x<y<z) \Rightarrow\left(x^{2}<y^{2}<z^{2}\right)\right]\right.$	\bigcirc	\bigcirc	
$(\forall x, y, z \in \mathbb{R})\left[\left((x<y<z) \Rightarrow\left(x^{3}<y^{3}<z^{3}\right)\right]\right.$	\bigcirc	\bigcirc	
$(\forall x, y \in \mathbb{N})(\exists z \in \mathbb{Q})[(x<y) \Rightarrow(x<z<y)]$	\bigcirc	\bigcirc	

Fill this in!

Statement	True	False	$n=0$
$(\exists n \in \mathbb{N})[n+n=0]$	-	\bigcirc	
$(\exists n \in \mathbb{N})[n+n=1]$	\bigcirc	\bigcirc	$2 n=1 \Rightarrow n=\frac{1}{2}$ ¢
$(\exists n \in \mathbb{Z})[n+n=1]$	\bigcirc	\bigcirc	Similarl, $\frac{1}{2} \notin \mathbb{Z}$
$(\exists x, y \in \mathbb{Z})[x+y=1]$	-	\bigcirc	$\begin{aligned} & x=0, y=1 \text { or } \\ & x=-1, y=2, \text { or } \end{aligned}$
$(\exists x \in \mathbb{R})[x(x+1)=-1]$	\bigcirc	\bigcirc	$x^{2}+x+1=0 \text { has no }$
$(\forall x, y, z \in \mathbb{R})\left[\left((x<y<z) \Rightarrow\left(x^{2}<y^{2}<z^{2}\right)\right]\right.$	\bigcirc	\bigcirc	
$(\forall x, y, z \in \mathbb{R})\left[\left((x<y<z) \Rightarrow\left(x^{3}<y^{3}<z^{3}\right)\right]\right.$	\bigcirc	\bigcirc	
$(\forall x, y \in \mathbb{N})(\exists z \in \mathbb{Q})[(x<y) \Rightarrow(x<z<y)]$	\bigcirc	\bigcirc	

Fill this in!

Statement	True	False	$n=0$
$(\exists n \in \mathbb{N})[n+n=0]$	\bigcirc	\bigcirc	
$(\exists n \in \mathbb{N})[n+n=1]$	\bigcirc	\bigcirc	$2 n=1 \Rightarrow n=\frac{1}{2} \notin \mathbb{N}$
$(\exists n \in \mathbb{Z})[n+n=1]$	\bigcirc	\bigcirc	Similarly, $\frac{1}{2} \notin \mathbb{Z}$
$(\exists x, y \in \mathbb{Z})[x+y=1]$	-	\bigcirc	$\begin{aligned} & x=0, y=1 \text { or } \\ & x=-1, y=2, \text { or } \end{aligned}$
$(\exists x \in \mathbb{R})[x(x+1)=-1]$	\bigcirc	-	$x^{2}+x+1=0 \text { has no }$
$(\forall x, y, z \in \mathbb{R})\left[\left((x<y<z) \Rightarrow\left(x^{2}<y^{2}<z^{2}\right)\right]\right.$	\bigcirc	\bigcirc	Think of graph of $f(x)=x^{2}$
$(\forall x, y, z \in \mathbb{R})\left[\left((x<y<z) \Rightarrow\left(x^{3}<y^{3}<z^{3}\right)\right]\right.$	\bigcirc	\bigcirc	
$(\forall x, y \in \mathbb{N})(\exists z \in \mathbb{Q})[(x<y) \Rightarrow(x<z<y)]$	\bigcirc	\bigcirc	

Fill this in!

Statement	True	False	
$(\exists n \in \mathbb{N})[n+n=0]$	-	\bigcirc	$n=0$
$(\exists n \in \mathbb{N})[n+n=1]$	\bigcirc	\bigcirc	$2 \mathrm{n}=1 \Rightarrow n=\frac{1}{2} \notin \mathbb{N}$
$(\exists n \in \mathbb{Z})[n+n=1]$	\bigcirc	\bigcirc	Similarly, $\frac{1}{2} \notin \mathbb{Z}$
$(\exists x, y \in \mathbb{Z})[x+y=1]$	-	\bigcirc	$\left\lvert\, \begin{aligned} & x=0, y=1 \text { or } \\ & x=-1, y=2, \text { or } \end{aligned}\right.$
$(\exists x \in \mathbb{R})[x(x+1)=-1]$	\bigcirc	\bigcirc	$\begin{aligned} & x^{2}+x+1=0 \text { has no } \\ & \text { real solutions } \end{aligned}$
$(\forall x, y, z \in \mathbb{R})\left[\left((x<y<z) \Rightarrow\left(x^{2}<y^{2}<z^{2}\right)\right]\right.$	\bigcirc	\bigcirc	Think of graph of $f(x)=x^{2}$
$(\forall x, y, z \in \mathbb{R})\left[\left((x<y<z) \Rightarrow\left(x^{3}<y^{3}<z^{3}\right)\right]\right.$	\bigcirc	\bigcirc	Think of grap of $f(x)=x^{3}$
$(\forall x, y \in \mathbb{N})(\exists z \in \mathbb{Q})[(x<y) \Rightarrow(x<z<y)]$	\bigcirc	\bigcirc	

Fill this in!

Statement	True	False	
$(\exists n \in \mathbb{N})[n+n=0]$	-	\bigcirc	$n=0$
$(\exists n \in \mathbb{N})[n+n=1]$	\bigcirc	\bigcirc	$2 n=1 \Rightarrow n=\frac{1}{2} \notin \mathbb{N}$
$(\exists n \in \mathbb{Z})[n+n=1]$	\bigcirc	\bigcirc	Similarl, $\frac{1}{2} \notin \mathbb{Z}$
$(\exists x, y \in \mathbb{Z})[x+y=1]$	-	\bigcirc	$\begin{aligned} & x=0, y=1 \text { or } \\ & x=-1, y=2, \text { or } \end{aligned}$
$(\exists x \in \mathbb{R})[x(x+1)=-1]$	\bigcirc	\bigcirc	$\begin{aligned} & x^{2}+x+1=0 \text { has no } \\ & \text { real soltions } \end{aligned}$
$(\forall x, y, z \in \mathbb{R})\left[\left((x<y<z) \Rightarrow\left(x^{2}<y^{2}<z^{2}\right)\right]\right.$	\bigcirc	\bigcirc	Think of graph of $f(x)=x^{2}$
$(\forall x, y, z \in \mathbb{R})\left[\left((x<y<z) \Rightarrow\left(x^{3}<y^{3}<z^{3}\right)\right]\right.$	-	\bigcirc	Think of fraph of $f(x)=x^{3}$
$(\forall x, y \in \mathbb{N})(\exists z \in \mathbb{Q})[(x<y) \Rightarrow(x<z<y)]$	-	\bigcirc	E.g: arithmetic mean

Finding domains

- Give infinite sets D such that $(\forall x \in D)(\exists y \in D)[x<y]$

1. Is true

Finding domains

- Give infinite sets D such that $(\forall x \in D)(\exists y \in D)[x<y]$

1. Is true $(D=\mathbb{N}$, select $y=x+1)$

Finding domains

- Give infinite sets D such that $(\forall x \in D)(\exists y \in D)[x<y]$

1. Is true $(D=\mathbb{N}$, select $y=x+1)$
2. Is false

Finding domains

- Give infinite sets D such that $(\forall x \in D)(\exists y \in D)[x<y]$

1. Is true $(D=\mathbb{N}$, select $y=x+1)$
2. Is false ($D=\mathbb{Z}^{\leq 0}$, counter-example is 0)

Finding domains

- Give infinite sets D such that $(\forall x \in D)(\exists y \in D)[x<y]$

1. Is true $(D=\mathbb{N}$, select $y=x+1)$
2. Is false ($D=\mathbb{Z}^{\leq 0}$, counter-example is 0)

- Do the same thing for

$$
(\forall x \in D)[x \leq 1] \wedge(\forall x \in D)(\exists y \in D)[x<y]
$$

Finding domains

- Give infinite sets D such that $(\forall x \in D)(\exists y \in D)[x<y]$

1. Is true $(D=\mathbb{N}$, select $y=x+1)$
2. Is false ($D=\mathbb{Z}^{\leq 0}$, counter-example is 0)

- Do the same thing for

$$
(\forall x \in D)[x \leq 1] \wedge(\forall x \in D)(\exists y \in D)[x<y]
$$

1. True for $D=(-\infty, 1)$

Finding domains

- Give infinite sets D such that $(\forall x \in D)(\exists y \in D)[x<y]$

1. Is true $(D=\mathbb{N}$, select $y=x+1)$
2. Is false ($D=\mathbb{Z}^{\leq 0}$, counter-example is 0)

- Do the same thing for

$$
(\forall x \in D)[x \leq 1] \wedge(\forall x \in D)(\exists y \in D)[x<y]
$$

1. True for $D=(-\infty, 1)$
2. False for $D=(-\infty, 1]$ (!)

Subset

- We say that A is a subset of $B(A \subseteq B)$ iff
$(\forall x \in A)[x \in B]$

$(\forall x \in U)[(x \in A) \Rightarrow(x \in B)]$

Superset and proper subset/superset

- We say that B is a superset of $A(B \supseteq A)$ iff $A \subseteq B$.
- We say that A is a proper subset of $B(A \subset B)$ iff $(A \subseteq B) \wedge(A \neq B)$.
- We say that B is a proper superset of $A(B \supset A)$ iff $A \subset B$

Union

$$
A \cup B=\{(x \in A) \vee(x \in B)\}
$$

Union

$$
A \cup B=\{(x \in A) \vee(x \in B)\}
$$

Connection between union and logical disjunction!

Intersection

$$
A \cap B=\{(x \in A) \wedge(x \in B)\}
$$

Absolute complement

$$
A^{c}=\{(x \notin A)\}=\{(x \in U) \wedge(\sim(x \in A))\}
$$

Absolute complement

$$
A^{c}=\{(x \notin A)\}=\{(x \in U) \wedge(\sim(x \in A))\}
$$

Connection between absolute complement and logical negation!

Absolute complement

$$
\left(A^{C}\right)=\{(x \notin A)\}=\{(x \in U) \wedge(\sim(x \in A))\}
$$

Some use A^{\prime} or \bar{A}. They are Wrong, we are right.
Connection between absolute complement and logical negation!

Relative Complement

$$
A-B=\{(x \in A) \wedge(x \notin B)\}
$$

Relative Complement

Careful about membership and subset!

- Be careful to distinguish between members of a set and subsets of a set...

False

Careful about membership and subset!

- Be careful to distinguish between members of a set and subsets of a set...

True
False

1. $1 \in\{-2,0,1,3\}$

Careful about membership and subset!

- Be careful to distinguish between members of a set and subsets of a set...

True
False

1. $1 \in\{-2,0,1,3\} \top$
2. $1 \in\{-2,0,\{1\}, 3\}$

Careful about membership and subset!

- Be careful to distinguish between members of a set and subsets of a set...

True
False

1. $1 \in\{-2,0,1,3\} \top$
2. $1 \in\{-2,0,\{1\}, 3\} F$
3. $1 \subseteq\{-2,0,\{1\}, 3\}$

Careful about membership and subset!

- Be careful to distinguish between members of a set and subsets of a set...

True
False

1. $1 \in\{-2,0,1,3\} \top$
2. $1 \in\{-2,0,\{1\}, 3\} F$
3. $1 \subseteq\{-2,0,\{1\}, 3\}$ F, in fact, not even mathematically correct syntax
4. $\{1\} \subseteq\{-2,0,\{1\}, 3\}$

Careful about membership and subset!

- Be careful to distinguish between members of a set and subsets of a set...

True

False

1. $1 \in\{-2,0,1,3\} \top$
2. $1 \in\{-2,0,\{1\}, 3\} F$
3. $1 \subseteq\{-2,0,\{1\}, 3\}$ F, in fact, not even mathematically correct syntax
4. $\{1\} \subseteq\{-2,0,\{1\}, 3\}$
5. $\{1\} \in\{-2,0,\{1\}, 3\}$

Careful about membership and subset!

- Be careful to distinguish between members of a set and subsets of a set...

True

False

1. $1 \in\{-2,0,1,3\} \top$
2. $1 \in\{-2,0,\{1\}, 3\}$ •
3. $1 \subseteq\{-2,0,\{1\}, 3\} \mathrm{F}$, in fact, not even mathematically correct syntax
4. $\{1\} \subseteq\{-2,0,\{1\}, 3\}$ F
5. $\{1\} \in\{-2,0,\{1\}, 3\} \mathrm{T}$
6. $\{1\} \subseteq\{-2,0,1,3\}$

Careful about membership and subset!

- Be careful to distinguish between members of a set and subsets of a set...

True

False

1. $1 \in\{-2,0,1,3\} \top$
2. $1 \in\{-2,0,\{1\}, 3\}$ •
3. $1 \subseteq\{-2,0,\{1\}, 3\} \mathrm{F}$, in fact, not even mathematically correct syntax
4. $\{1\} \subseteq\{-2,0,\{1\}, 3\}$ F
5. $\{1\} \in\{-2,0,\{1\}, 3\} \mathrm{T}$
6. $\{1\} \subseteq\{-2,0,1,3\} \top$

The empty set ($\emptyset,\{ \}$)

- The empty set, denoted either \varnothing or $\}$, is the unique set with no elements.
- Uniqueness can be proven, through a proof by contradiction!

The empty set ($\emptyset,\{ \}$)

- The empty set, denoted either \varnothing or $\}$, is the unique set with no elements.
- Uniqueness can be proven, through a proof by contradiction!

The empty set ($\emptyset,\{ \}$)

- The empty set, denoted either \varnothing or $\}$, is the unique set with no elements.
- Uniqueness can be proven, through a proof by contradiction!

True

False

1. $\varnothing \subseteq \mathbb{N}$

The empty set ($\emptyset,\{ \}$)

- The empty set, denoted either \emptyset or $\}$, is the unique set with no elements.
- Uniqueness can be proven, through a proof by contradiction!

True

False

1. $\varnothing \subseteq \mathbb{N} T$
2. $\varnothing \subseteq A$ for any set A

The empty set ($\emptyset,\{ \}$)

- The empty set, denoted either \varnothing or $\}$, is the unique set with no elements.
- Uniqueness can be proven, through a proof by contradiction!

[^0]1. $\emptyset \subseteq \mathbb{N} T$
2. $\emptyset \subseteq A$ for any set $A T$
3. $\varnothing \subset A$ for any set A

The empty set ($\emptyset,\{ \}$)

- The empty set, denoted either \emptyset or $\}$, is the unique set with no elements.
- Uniqueness can be proven, through a proof by contradiction!

1. $\varnothing \subseteq \mathbb{N}$
2. $\emptyset \subseteq A$ for any set $A T$
3. $\emptyset \subset A$ for any set $A F$
4. $\varnothing \subseteq \emptyset$

The empty set ($\emptyset,\{ \}$)

- The empty set, denoted either \emptyset or $\}$, is the unique set with no elements.
- Uniqueness can be proven, through a proof by contradiction!

True
False

1. $\emptyset \subseteq \mathbb{N} T$
2. $\emptyset \subseteq A$ for any set $A T$
3. $\emptyset \subset A$ for any set $A F$
4. $\emptyset \subseteq \emptyset T$

The empty set ($\emptyset,\{ \}$)

- The empty set, denoted either \emptyset or $\}$, is the unique set with no elements.
- Uniqueness can be proven, through a proof by contradiction!

1. $\varnothing \subseteq \mathbb{N} T$
2. $\emptyset \subseteq A$ for any set $A T$
3. $\emptyset \subset A$ for any set $A F$
4. $\emptyset \subseteq \emptyset \top$

The powerset

- Given a set A , the powerset $\mathcal{P}(A)$ is the set of all subsets of A.
- $\mathcal{P}(\{0,1\})=\{\varnothing,\{0\},\{1\},\{0,1\}\}$
- $\mathcal{P}(\{0,1,2\})=\{\varnothing,\{0\},\{1\},\{2\},\{0,1\},\{1,2\},\{0,2\},\{0,1,2\}\}$
- $\mathbb{N}^{2 k}, \mathbb{N}^{2 k+1}, \mathbf{P}$, SQUARES $\in \mathcal{P}(\mathbb{N})$
- And lots more...

Facts about the powerset

- The following are facts about the powerset:
- Since $\varnothing \subseteq A$ for all sets $A, \varnothing \in \mathcal{P}(A)$ for all sets A
- Since $A \subseteq \mathrm{~A}$ for all sets $\mathrm{A}, A \in \mathcal{P}(\mathrm{~A})$ for all sets A

Powerset quizzing

- Let $A=\{1,2, \ldots, n\}$
- Then, $|P(A)|$

$$
\approx n \cdot \log n \quad=n^{2} \quad=2^{n} \quad=n!
$$

Powerset quizzing

- Let $A=\{1,2, \ldots, n\}$
- Then, $|P(A)|$

```
\approxn\cdotlogn
```

$$
=n^{2}
$$

Powerset quizzing

- $P(\{1\})=$

Powerset quizzing

- $P(\{1\})=\{\varnothing,\{1\}\}$
- $P(P(\{1\}))=$

Powerset quizzing

- $P(\{1\})=\{\varnothing,\{1\}\}$
- $P(P(\{1\}))=\{\varnothing,\{\varnothing\},\{\{1\}\},\{\varnothing,\{1\}\}\}$
- $P(\varnothing)=$

Powerset quizzing

- $P(\{1\})=\{\varnothing,\{1\}\}$
- $P(P(\{1\}))=\{\varnothing,\{\varnothing\},\{\{1\}\},\{\varnothing,\{1\}\}\}$
- $P(\varnothing)=\{\varnothing\}$
- $P(\{\varnothing\})=$

Powerset quizzing

- $P(\{1\})=\{\varnothing,\{1\}\}$
- $P(P(\{1\}))=\{\varnothing,\{\varnothing\},\{\{1\}\},\{\varnothing,\{1\}\}\}$
- $P(\varnothing)=\{\varnothing\}$
- $P(\{\varnothing\})=\{\varnothing,\{\varnothing\}\}$

STOP

[^0]: False

