Some More Combinatorics

250H

How many solutions are there to $\mathrm{x}_{1}+\ldots+\mathrm{x}_{\mathrm{k}}=\mathrm{n}$, where $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}$ in $\{0,1,2, . .$.$\} ?$

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=40
$$

Balls and Lines \Stars and Bars

How many ways there are to put n indistinguishable balls into k distinguishable bins?

$$
| * *| * *
$$

Stars and Bars

How many ways there are to put n indistinguishable balls into k distinguishable bins?

$$
| * *| * *
$$

We can view this as permutations of $\mathrm{k}-1$ lines and n balls.

Stars and Bars

How many ways there are to put n indistinguishable balls into k distinguishable bins?

$$
| * *| * *
$$

We can view this as permutations of $k-1$ lines and n balls.

$$
\frac{(n+k-1)!}{n!(k-1)!}=\binom{n+k-1}{k-1}=\binom{n+k-1}{n}
$$

How many solutions are there to $x_{1}+\ldots+x_{k}=n$, where x_{1}, \ldots, x_{k} in $\{0,1,2, \ldots\}$?

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=40 \\
\frac{(n+k-1)!}{n!(k-1)!}=\frac{(40+5-1)!}{40!(5-1)!}=135751
\end{gathered}
$$

Stars and bars: What if all the x_{i} are ≥ 1 ?

Stars and bars: What if all the x_{i} are ≥ 1 ?

Then we have $\mathrm{k}-1$ bars and $\mathrm{n}-\mathrm{k}$ stars.

Stars and bars: What if all the x_{i} are ≥ 1 ?

Then we have $\mathrm{k}-1$ bars and $\mathrm{n}-\mathrm{k}$ stars.

$$
\frac{((n-k)+(k-1)-1)!}{(n-k)!((k-1)-1)!}=\frac{n-2!}{(n-k)!(k-2)!}
$$

