START

RECORDING

Strong Induction

CMSC 250

Strong Induction: The Principle

- Let us recall the weak induction principle for a moment

Strong Induction: The Principle

- Let us recall the weak induction principle for a moment
- The strong induction principle is different in only one thing: Instead of depending on just $P(n)$ to deduce $P(n+1)$, we will depend on many $P(i), 0 \leq i \leq n$

Strong Induction: The Principle

- Let us recall the weak induction principle for a moment
- The strong induction principle is different in only one thing: Instead of depending on just $P(n)$ to deduce $P(n+1)$, we will depend on many $P(i), 0 \leq i \leq n$
- Visualization:

Strong Induction: The Principle

- The goal is the same: We want to prove a statement $P(n) \forall n \geq 0$
- The principle has, once again, two presuppositions. If:

Strong Induction: The Principle

- The goal is the same: We want to prove a statement $P(n) \forall n \geq 0$
- The principle has, once again, two presuppositions. If:
a) $P(0), P(1), \ldots, P(a)$ are true

Strong Induction: The Principle

- The goal is the same: We want to prove a statement $P(n) \forall n \geq 0$
- The principle has, once again, two presuppositions. If:
a) $P(0), P(1), \ldots, P(a)$ are true

Strong Induction: The Principle

- The goal is the same: We want to prove a statement $P(n) \forall n \geq 0$
- The principle has, once again, two presuppositions. If:
a) $P(0), P(1), \ldots, P(a)$ are true
b) For $n \geq a$,
$P(0) \wedge P(1) \wedge \cdots \wedge P(a) \wedge \cdots \wedge P(n-2) \wedge P(n-1) \Rightarrow P(n)$

Strong Induction: The Principle

- The goal is the same: We want to prove a statement $P(n) \forall n \geq 0$
- The principle has, once again, two presuppositions. If:
a) $P(0), P(1), \ldots, P(a)$ are true
b) For $n \geq a$,
$P(0) \wedge P(1) \wedge \cdots \wedge P(a) \wedge \cdots \wedge P(n-2) \wedge P(n-1) \Rightarrow P(n)$
- Then, we have $\forall n[P(n)]$

Strong Induction: The Principle

- The goal is the same: We want to prove a statement $P(n) \forall n \geq 0$
- The principle has, once again, two presuppositions. If:
a) $P(0), P(1), \ldots, P(a)$ are true
b) For $n \geq a$,
$P(0) \wedge P(1) \wedge \cdots \wedge P(a) \wedge \cdots \wedge P(n-2) \wedge P(n-1) \Rightarrow P(n)$
- Then, we have $\forall n[P(n)]$
- If you plug in $n=a$ you get $P(a)$ holds, which we already know

Strong Induction: The Principle

- The goal is the same: We want to prove a statement $P(n) \forall n \geq 0$
- The principle has, once again, two presuppositions. If:
a) $P(0), P(1), \ldots, P(a)$ are true
b) For $n \geq a$,
$P(0) \wedge P(1) \wedge \cdots \wedge P(a) \wedge \cdots \wedge P(n-2) \wedge P(n-1) \Rightarrow P(n)$
- Then, we have $\forall n[P(n)]$
- If you plug in $n=a$ you get $P(a)$ holds, which we already know
- $\forall n \geq a+1 \rightarrow \mathrm{P}(\mathrm{a}+1)$

Strong Induction: The Principle

- The goal is the same: We want to prove a statement $P(n) \forall n \geq 0$
- The principle has, once again, two presuppositions. If:
a) $P(0), P(1), \ldots, P(a)$ are true
b) For $n \geq a$,

$$
P(0) \wedge P(1) \wedge \cdots \wedge P(a) \wedge \cdots \wedge P(n-2) \wedge P(n-1) \Rightarrow P(n)
$$

- Then, we have $\forall n[P(n)]$
- If you plug in $n=a$ you get $P(a)$ holds, which we already know
- $\forall n \geq a+1 \rightarrow \mathrm{P}(\mathrm{a}+1)$
- Then $P(a+1)$ is true. We can continue with $P(a+2), P(a+3), \ldots$.

[^0]
How We'll Make it Work

- We want to prove a statement $P(n) \forall n \geq 0$

How We'll Make it Work

1. Inductive base: We will explicitly prove (no matter how easy it might initially seem) that

$$
P(0), P(1), P(2), \ldots, P(a)
$$

ㅂor

How We'll Make it Work

1. Inductive base: We will explicitly prove (no matter how easy it might initially seem) that

$$
P(0), P(1), P(2), \ldots, P(a)
$$

[^1]
How We'll Make it Work

1. Inductive base: We will explicitly prove (no matter how easy it might initially seem) that

$$
P(0), P(1), P(2), \ldots, P(a)
$$

2. Inductive hypothesis: For $n \geq a$ and for every $i: 0 \leq i \leq n$, we will assume that $P(i)$ holds

How We'll Make it Work

1. Inductive base: We will explicitly prove (no matter how easy it might initially seem) that

$$
P(0), P(1), P(2), \ldots, P(a)
$$

2. Inductive hypothesis: For $n \geq a$ and for every $i: 0 \leq i \leq n$, we will assume that $P(i)$ holds

\square $n+1$

\square

How We'll Make it Work

1. Inductive base: We will explicitly prove (no matter how easy it might initially seem) that

$$
P(0), P(1), P(2), \ldots, P(a)
$$

2. Inductive hypothesis: For $n \geq a$ and for every $i: 0 \leq i \leq n$, we will assume that $P(i)$ holds
3. Inductive step: We attempt to prove $P(n+1)$.

How We'll Make it Work

1. Inductive base: We will explicitly prove (no matter how easy it might initially seem) that

$$
P(0), P(1), P(2), \ldots, P(a)
$$

2. Inductive hypothesis: For $n \geq a$ and for every $i: 0 \leq i \leq n$, we will assume that $P(i)$ holds
3. Inductive step: We attempt to prove $P(n+1)$.

Note that we assume

$$
P(0) \wedge P(1) \wedge \cdots \wedge P(n)!
$$

\square

How We'll Make it Work

1. Inductive base: We will explicitly prove (no matter how easy it might initially seem) that

$$
P(0), P(1), P(2), \ldots, P(a)
$$

2. Inductive hypothesis: For $n \geq a$ and for every $i: 0 \leq i \leq n$, we will assume that $P(i)$ holds
3. Inductive step: We attempt to prove $P(n+1)$.

- But, by the inductive principle, this means that we can expand our net some more...

How We'll Make it Work

1. Inductive base: We will explicitly prove (no matter how easy it might initially seem) that

$$
P(0), P(1), P(2), \ldots, P(a)
$$

2. Inductive hypothesis: For $n \geq a$ and for every $i: 0 \leq i \leq n$, we will assume that $P(i)$ holds
3. Inductive step: We attempt to prove $P(n+1)$.

- But, by the inductive principle, this means that we can expand our net some more...
- And prove the statement for $n+2$

How We'll Make it Work

1. Inductive base: We will explicitly prove (no matter how easy it might initially seem) that

$$
P(0), P(1), P(2), \ldots, P(a)
$$

2. Inductive hypothesis: For $n \geq a$ and for every $i: 0 \leq i \leq n$, we will assume that $P(i)$ holds
3. Inductive step: We attempt to prove $P(n+1)$.

- But, by the inductive principle, this means that we can expand our net some more...
- And prove the statement for $n+2, n+3, \ldots$

Utility of Strong Induction

- Enormous
- Correctness of algorithms
- Growth of structures like trees, graphs, lists, strings, sets

Utility of Strong Induction

- Enormous
- Correctness of algorithms
- Growth of structures like trees, graphs, lists, strings, sets
- Terrifically useful in sequences
- How many ways have we talked about that can be used to describe a sequence?

Utility of Strong Induction

- Enormous
- Correctness of algorithms
- Growth of structures like trees, graphs, lists, strings, sets
- Terrifically useful in sequences
- How many ways have we talked about that can be used to describe a sequence?

1. Outlining terms
2. Recursive definition
3. Closed-form formula

- Also useful in the study of algorithm correctness`.

A First Example

- Let a be a sequence such that:

$$
a_{n}= \begin{cases}1, & n=0 \\ 8, & n=1 \\ a_{n-1}+2 \cdot a_{n-2}, & n \geq 2\end{cases}
$$

- Prove that $a_{n}=3 \cdot 2^{n}+2(-1)^{n+1}, n \in \mathbb{N}$

A First Example

- Let a be a sequence such that:

$$
a_{n}= \begin{cases}1, & n=0 \\ 8, & n=1 \\ a_{n-1}+2 \cdot a_{n-2}, & n \geq 2\end{cases}
$$

- Prove that $a_{n}=3 \cdot 2^{n}+2(-1)^{n+1}, n \in \mathbb{N}$

$$
P(n)
$$

- How many elements in my inductive base?

A First Example

- Let a be a sequence such that:

$$
a_{n}= \begin{cases}1, & n=0 \\ 8, & n=1 \\ a_{n-1}+2 \cdot a_{n-2}, & n \geq 2\end{cases}
$$

- Prove that $a_{n}=3 \cdot 2^{n}+2(-1)^{n+1}, n \in \mathbb{N}$

$$
P(n)
$$

- How many elements in my inductive base?

Inductive Base

- For $n=0, a_{0}=1$ by the definition of a. $P(0)$ says: $a_{0}=3 \cdot 2^{0}+2(-1)^{1}=3-2=1$. So $P(0)$ holds.
- For $\mathrm{n}=1, a_{1}=8$ by the definition of $a . P(1)$ says: $a_{1}=3 \cdot 2^{1}+2(-1)^{2}=6+2=8$. So P(1) holds.

Inductive Base

- For $n=0, a_{0}=1$ by the definition of a. $P(0)$ says: $a_{0}=3 \cdot 2^{0}+2(-1)^{1}=3-2=1$. So $P(0)$ holds.
- For $\mathrm{n}=1, a_{1}=8$ by the definition of a. $P(1)$ says: $a_{1}=3 \cdot 2^{1}+2(-1)^{2}=6+2=8$. So $\mathrm{P}(1)$ holds.

Inductive Hypothesis

- Suppose $n=k \geq 1$. Then, $\forall i \in\{0,1, \ldots, n\}$ assume $P(i)$, i.e

$$
a_{i}=3 \cdot 2^{i}+2(-1)^{i+1}, i=0,1, \ldots, n
$$

Inductive Hypothesis

- Suppose $n=k \geq 1$. Then, $\forall i \in\{0,1, \ldots, n\}$ assume $P(i)$, i.e

$$
a_{i}=3 \cdot 2^{i}+2(-1)^{i+1}, i=0,1, \ldots, n
$$

Inductive Hypothesis

- We will now prove $P(n+1)$, i.e

$$
a_{n+1}=3 \cdot 2^{n+1}+2(-1)^{n+2}
$$

Inductive Step

- Since $n \geq \mathbf{1} \Rightarrow(n+1) \geq 2$, we can apply the recursive rule of the sequence.
- From the recursive definition of a_{n}, we obtain:

$$
\begin{gathered}
a_{n+1}=a_{n}+2 \cdot a_{n-1} \stackrel{I . H}{=} 3 \cdot 2^{n}+2(-1)^{n+1}+2 \cdot\left(3 \cdot 2^{n-1}+2(-1)^{n}\right)= \\
=3 \cdot\left(2^{n}+2 \cdot 2^{n-1}\right)+2 \cdot(-1)^{n}[-1+2]= \\
=3 \cdot\left(2 \cdot 2^{n}\right)+2 \cdot(-1)^{n}=3 \cdot 2^{n+1}+2(-1)^{n+2}
\end{gathered}
$$

Inductive Step

- Since $n \geq 1 \Rightarrow(n+1) \geq 2$, we can apply the recursive rule of the sequence.
- From the recursive definition of a_{n}, we obtain:

Inductive step proven!

$$
\begin{gathered}
a_{n+1}=a_{n}+2 \cdot a_{n-1} \stackrel{I \cdot H}{=} 3 \cdot 2^{n}+2(-1)^{n+1}+2 \cdot\left(3 \cdot 2^{n-1}+2(-1)^{n}\right)= \\
=3 \cdot\left(2^{n}+2 \cdot 2^{n-1}\right)+2 \cdot(-1)^{n}[-1+2]= \\
=3 \cdot\left(2 \cdot 2^{n}\right)+2 \cdot(-1)^{n}=3 \cdot 2^{n+1}+2(-1)^{n+2}
\end{gathered}
$$

\square

Inductive Step

- Since $n \geq \mathbf{1} \Rightarrow(n+1) \geq 2$, we can apply the recursive rule of the sequence.
- From the recursive definition of a_{n}, we obtain:

$$
\begin{gathered}
a_{n+1}=a_{n}+2 \cdot a_{n-1} \stackrel{I . H}{=} 3 \cdot 2^{n}+2(-1)^{n+1}+2 \cdot\left(3 \cdot 2^{n-1}+2(-1)^{n}\right)= \\
=3 \cdot\left(2^{n}+2 \cdot 2^{n-1}\right)+2 \cdot(-1)^{n}[-1+2]= \\
=3 \cdot\left(2 \cdot 2^{n}\right)+2 \cdot(-1)^{n}=3 \cdot 2^{n+1}+2(-1)^{n+2}
\end{gathered}
$$

\square

Here's Another

- Suppose that the sequence a_{n} is as follows:

$$
a_{n}= \begin{cases}12, & n=0 \\ 29, & n=1 \\ 5 a_{n-1}-6 a_{n-2}, & n \geq 2\end{cases}
$$

- Then, prove that $a_{n}=5 \cdot 3^{n}+7 \cdot 2^{n}, \forall n \in \mathbb{N}$

Inductive Base

- Let the statement to be proven be called $P(n)$. We proceed via strong induction on n.
- Inductive base: We want to prove $P(0), P(1)$.
- For $n=0, P(0)$ is $s_{0}=5 \cdot 3^{0}+7 \cdot 2^{0} \Leftrightarrow 12=12$
- For $n=1, P(1)$ is $s_{1}=5 \cdot 3^{1}+7 \cdot 2^{1} \Leftrightarrow 29=15+14$

So the inductive base has been established!

Inductive Hypothesis

- Inductive Hypothesis: Let $n \geq 1$. Then, we assume that, for all $i=$ $0,1, \ldots, n, P(i)$ holds, i.e

$$
a_{i}=5 \cdot 3^{i}+7 \cdot 2^{i}, \quad i=0,1, \ldots, n
$$

Inductive Step

- Inductive Step: We will attempt to prove $P(n+1)$, i.e

$$
a_{n+1}=5 \cdot 3^{n+1}+7 \cdot 2^{n+1}
$$

Inductive Step

- Inductive Step: We will attempt to prove $P(n+1)$, i.e

$$
a_{n+1}=5 \cdot 3^{n+1}+7 \cdot 2^{n+1}
$$

- Since ($n \geq 1$), $(n+1 \geq 2)$ and we can use the recursive definition of a.
- From the recursive definition of a we have:

$$
\begin{aligned}
& a_{n+1}=5 a_{n}-6 a_{n-1} \stackrel{I . H}{=} 5\left(5 \cdot 3^{n}+7 \cdot 2^{n}\right)-6\left(5 \cdot 3^{n-1}+7 \cdot 2^{n-1}\right) \\
& =25 \cdot 3^{n}+35 \cdot 2^{n}-30 \cdot 3^{n-1}-42 \cdot 2^{n-1} \\
& =5 \cdot\left(5 \cdot 3^{n}-2 \cdot 3^{n}\right)+7\left(5 \cdot 2^{n}-3 \cdot 2^{n}\right)=5 \cdot 3^{n+1}+7 \cdot 2^{n+1}
\end{aligned}
$$

Inductive Step

- Inductive Step: We will attempt to prove $P(n+1)$, i.e

$$
a_{n+1}=5 \cdot 3^{n+1}+7 \cdot 2^{n+1}
$$

- Since $(n \geq 1)$, $(n+1 \geq 2)$ and we can use the recursive definition of a.
- From the recursive definition of a we have:

$$
\begin{aligned}
& a_{n+1}=5 a_{n}-6 a_{n-1} \stackrel{I \cdot H}{=} 5\left(5 \cdot 3^{n}+7 \cdot 2^{n}\right)-6\left(5 \cdot 3^{n-1}+7 \cdot 2^{n-1}\right) \\
& =25 \cdot 3^{n}+35 \cdot 2^{n}-30 \cdot 3^{n-1}-42 \cdot 2^{n-1} \\
& =5 \cdot\left(5 \cdot 3^{n}-2 \cdot 3^{n}\right)+7\left(5 \cdot 2^{n}-3 \cdot 2^{n}\right)=5 \cdot 3^{n+1}+7 \cdot 2^{n+1} \square
\end{aligned}
$$

A Sequence Problem for You!

- Let a_{n} be defined as:

$$
a_{n}= \begin{cases}5, & n=0 \\ 16, & n=1 \\ 7 a_{n-1}-10 a_{n-2}, & n \geq 2\end{cases}
$$

- Prove that $a_{n}=3 \cdot 2^{n}+2 \cdot 5^{n}$
- Breakout Rooms

Another Sequence Problem

- Let a_{n} be defined as:

$$
a_{n}= \begin{cases}3, & n=0 \\ 5, & n=1 \\ 3 a_{n-1}-2 a_{n-2}, & n \geq 2\end{cases}
$$

- Prove that $a_{n}=2^{n+1}+1$

Important Note

- In our proofs on recurrences, $P(n+1)$ dependent on stuff such as

$$
P(n), P(n-1), P(n-2), \ldots
$$

- It is possible (and common) for $P(n+1)$ to depend on

$$
P((n+1) / 2), P((n+1) / 3), P(\sqrt{n+1}) \ldots
$$

Important Note

- In our proofs on recurrences, $P(n+1)$ dependent on stuff such as

$$
P(n), P(n-1), P(n-2), \ldots
$$

- It is possible (and common) for $P(k+1)$ to depend on

$$
P((n+1) / 2), P((n+1) / 3), P(\sqrt{n+1}) \ldots
$$

STOP

RECORDING

[^0]:

[^1]: "Safety Net" Applied! \quad.

