START RECORDING

Strong Induction

• Let us recall the weak induction principle for a moment

- Let us recall the weak induction principle for a moment
- The strong induction principle is different in only one thing: Instead of depending on just P(n) to deduce P(n + 1), we will depend on many $P(i), 0 \le i \le n$

- Let us recall the weak induction principle for a moment
- The strong induction principle is different in only one thing: Instead of depending on just P(n) to deduce P(n + 1), we will depend on many $P(i), 0 \le i \le n$
- Visualization:

Weak Induction

Strong Induction

- The goal is the same: We want to prove a statement $P(n) \forall n \ge 0$
- The principle has, once again, two presuppositions. *If:*

- The goal is the same: We want to prove a statement $P(n) \forall n \ge 0$
- The principle has, once again, two presuppositions. *If:* a) P(0), P(1), ..., P(a) are true

- The goal is the same: We want to prove a statement $P(n) \forall n \ge 0$
- The principle has, once again, two presuppositions. *If:* a) P(0), P(1), ..., P(a) are true

- The goal is the same: We want to prove a statement $P(n) \forall n \ge 0$
- The principle has, once again, two presuppositions. *If:*
 - a) P(0), P(1), ..., P(a) are true
 - b) For $n \ge a$, $P(\mathbf{0}) \land P(\mathbf{1}) \land \dots \land P(\mathbf{a}) \land \dots \land P(\mathbf{n-2}) \land P(\mathbf{n-1}) \Rightarrow P(\mathbf{n})$

- The goal is the same: We want to prove a statement $P(n) \forall n \ge 0$
- The principle has, once again, two presuppositions. If:
 - a) P(0), P(1), ..., P(a) are true
 - b) For $n \ge a$, $P(0) \land P(1) \land \dots \land P(a) \land \dots \land P(n-2) \land P(n-1) \Rightarrow P(n)$
- **Then**, we have $\forall n [P(n)]$

- The goal is the same: We want to prove a statement $P(n) \forall n \ge 0$
- The principle has, once again, two presuppositions. If:
 - a) P(0), P(1), ..., P(a) are true
 - b) For $n \ge a$, $P(\mathbf{0}) \land P(\mathbf{1}) \land \cdots \land P(\mathbf{a}) \land \cdots \land P(\mathbf{n-2}) \land P(\mathbf{n-1}) \Rightarrow P(\mathbf{n})$
- **Then**, we have $\forall n [P(n)]$
 - If you plug in n = a you get P(a) holds, which we already know

- The goal is the same: We want to prove a statement $P(n) \forall n \ge 0$
- The principle has, once again, two presuppositions. *If:*
 - a) P(0), P(1), ..., P(a) are true
 - b) For $n \ge a$, $P(\mathbf{0}) \land P(\mathbf{1}) \land \cdots \land P(\mathbf{a}) \land \cdots \land P(\mathbf{n-2}) \land P(\mathbf{n-1}) \Rightarrow P(\mathbf{n})$
- **Then**, we have $\forall n [P(n)]$
 - If you plug in n = a you get P(a) holds, which we already know
 - $\forall n \ge a + 1 \rightarrow \mathsf{P}(a+1)$

- The goal is the same: We want to prove a statement $P(n) \forall n \ge 0$
- The principle has, once again, two presuppositions. *If:*
 - *a)* P(0), P(1), ..., P(a) are true
 - b) For $n \ge a$, $P(0) \land P(1) \land \dots \land P(a) \land \dots \land P(n-2) \land P(n-1) \Rightarrow P(n)$
- **Then**, we have $\forall n [P(n)]$
 - If you plug in n = a you get P(a) holds, which we already know
 - $\forall n \ge a + 1 \rightarrow \mathsf{P}(a+1)$
 - Then P(a+1) is true. We can continue with P(a+2), P(a+3),

• We want to prove a statement $P(n) \forall n \ge 0$

Inductive base: We will <u>explicitly prove</u> (no matter how easy it might initially seem) that

Inductive base: We will <u>explicitly prove</u> (no matter how easy it might initially seem) that

Inductive base: We will <u>explicitly prove</u> (no matter how easy it might initially seem) that

 $P(0), P(1), P(2), \dots, P(a)$

2. Inductive hypothesis: For $n \ge a$ and <u>for every</u> $i: 0 \le i \le n$, we will <u>assume</u> that P(i) holds

Inductive base: We will <u>explicitly prove</u> (no matter how easy it might initially seem) that

 $P(0), P(1), P(2), \dots, P(a)$

2. Inductive hypothesis: For $n \ge a$ and <u>for every</u> $i: 0 \le i \le n$, we will <u>assume</u> that P(i) holds

Inductive base: We will <u>explicitly prove</u> (no matter how easy it might initially seem) that

- 2. Inductive hypothesis: For $n \ge a$ and <u>for every</u> $i: 0 \le i \le n$, we will <u>assume</u> that P(i) holds
- 3. Inductive step: We attempt to <u>prove</u> P(n + 1).

Inductive base: We will <u>explicitly prove</u> (no matter how easy it might initially seem) that

 $P(0), P(1), P(2), \dots, P(a)$

2. Inductive hypothesis: For $n \ge a$ and <u>for every</u> $i: 0 \le i \le n$, we will <u>assume</u> that P(i) holds

Inductive base: We will <u>explicitly prove</u> (no matter how easy it might initially seem) that

- 2. Inductive hypothesis: For $n \ge a$ and <u>for every</u> $i: 0 \le i \le n$, we will <u>assume</u> that P(i) holds
- 3. Inductive step: We attempt to **prove** P(n + 1).
 - But, by the inductive principle, this means that we can expand our net some more...

Inductive base: We will <u>explicitly prove</u> (no matter how easy it might initially seem) that

- 2. Inductive hypothesis: For $n \ge a$ and <u>for every</u> $i: 0 \le i \le n$, we will <u>assume</u> that P(i) holds
- 3. Inductive step: We attempt to <u>prove</u> P(n + 1).
 - But, by the inductive principle, this means that we can expand our net some more...
 - And prove the statement for n + 2

Inductive base: We will <u>explicitly prove</u> (no matter how easy it might initially seem) that

- 2. Inductive hypothesis: For $n \ge a$ and <u>for every</u> $i: 0 \le i \le n$, we will <u>assume</u> that P(i) holds
- 3. Inductive step: We attempt to <u>prove</u> P(n + 1).
 - But, by the inductive principle, this means that we can expand our net some more...
 - And prove the statement for n + 2, n + 3, ...

Utility of Strong Induction

• Enormous

- Correctness of algorithms
- Growth of structures like trees, graphs, lists, strings, sets

Utility of Strong Induction

• Enormous

- Correctness of algorithms
- Growth of structures like trees, graphs, lists, strings, sets
- Terrifically useful in sequences
 - How many ways have we talked about that can be used to describe a sequence?

Utility of Strong Induction

• Enormous

- Correctness of algorithms
- Growth of structures like trees, graphs, lists, strings, sets
- Terrifically useful in sequences
 - How many ways have we talked about that can be used to describe a sequence?

• Also useful in the study of algorithm correctness`.

A First Example

• Let *a* be a sequence such that:

$$a_n = \begin{cases} 1, & n = 0\\ 8, & n = 1\\ a_{n-1} + 2 \cdot a_{n-2}, & n \ge 2 \end{cases}$$

• Prove that $a_n = 3 \cdot 2^n + 2(-1)^{n+1}$, $n \in \mathbb{N}$

A First Example

• Let *a* be a sequence such that:

$$a_n = \begin{cases} 1, & n = 0\\ 8, & n = 1\\ a_{n-1} + 2 \cdot a_{n-2}, & n \ge 2 \end{cases}$$

- Prove that $a_n = 3 \cdot 2^n + 2(-1)^{n+1}$, $n \in \mathbb{N}$ P(n)
- How many elements in my inductive base?

A First Example

• Let *a* be a sequence such that:

$$a_n = \begin{cases} 1, & n = 0\\ 8, & n = 1\\ a_{n-1} + 2 \cdot a_{n-2}, & n \ge 2 \end{cases}$$

- Prove that $a_n = 3 \cdot 2^n + 2(-1)^{n+1}$, $n \in \mathbb{N}$ P(n)
- How many elements in my inductive base?

1	2
3	Something Else

- For n = 0, $a_0 = 1$ by the definition of a. P(0) says: $a_0 = 3 \cdot 2^0 + 2(-1)^1 = 3 2 = 1$. So P(0) holds.
- For n = 1, $a_1 = 8$ by the definition of a. P(1) says: $a_1 = 3 \cdot 2^1 + 2(-1)^2 = 6 + 2 = 8$. So P(1) holds.

- For n = 0, $a_0 = 1$ by the definition of a. P(0) says: $a_0 = 3 \cdot 2^0 + 2(-1)^1 = 3 2 = 1$. So P(0) holds.
- For n = 1, $a_1 = 8$ by the definition of *a*. P(1) says: $a_1 = 3 \cdot 2^1 + 2(-1)^2 = 6 + 2 = 8$. So P(1) holds.

• Suppose $n = k \ge 1$. Then, $\forall i \in \{0, 1, ..., n\}$ assume P(i), i.e

$$a_i = 3 \cdot 2^i + 2(-1)^{i+1}, i = 0, 1, ..., n$$

• Suppose $n = k \ge 1$. Then, $\forall i \in \{0, 1, ..., n\}$ assume P(i), i.e

$$a_i = 3 \cdot 2^i + 2(-1)^{i+1}, i = 0, 1, ..., n$$

• We will now **prove** P(n + 1), i.e

$$a_{n+1} = 3 \cdot 2^{n+1} + 2(-1)^{n+2}$$

Since n ≥ 1 ⇒ (n + 1) ≥ 2, we can apply the recursive rule of the sequence.
From the recursive definition of a_n, we obtain:

$$a_{n+1} = a_n + 2 \cdot a_{n-1} \stackrel{I.H}{=} 3 \cdot 2^n + 2(-1)^{n+1} + 2 \cdot (3 \cdot 2^{n-1} + 2 (-1)^n) =$$

= 3 \cdot (2^n + 2 \cdot 2^{n-1}) + 2 \cdot (-1)^n [-1 + 2] =
= 3 \cdot (2 \cdot 2^n) + 2 \cdot (-1)^n = 3 \cdot 2^{n+1} + 2(-1)^{n+2}

• Since $n \ge 1 \Rightarrow (n + 1) \ge 2$, we can apply the recursive rule of the sequence. • From the recursive definition of a_n , we obtain:

Inductive step proven!

$$a_{n+1} = a_n + 2 \cdot a_{n-1} \stackrel{I.H}{=} 3 \cdot 2^n + 2(-1)^{n+1} + 2 \cdot (3 \cdot 2^{n-1} + 2 (-1)^n) =$$

= $3 \cdot (2^n + 2 \cdot 2^{n-1}) + 2 \cdot (-1)^n [-1 + 2] =$
= $3 \cdot (2 \cdot 2^n) + 2 \cdot (-1)^n = 3 \cdot 2^{n+1} + 2(-1)^{n+2}$

Since n ≥ 1 ⇒ (n + 1) ≥ 2, we can apply the recursive rule of the sequence.
From the recursive definition of a_n, we obtain:

$$a_{n+1} = a_n + 2 \cdot a_{n-1} \stackrel{I.H}{=} 3 \cdot 2^n + 2(-1)^{n+1} + 2 \cdot (3 \cdot 2^{n-1} + 2 (-1)^n) =$$

= $3 \cdot (2^n + 2 \cdot 2^{n-1}) + 2 \cdot (-1)^n [-1 + 2] =$
= $3 \cdot (2 \cdot 2^n) + 2 \cdot (-1)^n = 3 \cdot 2^{n+1} + 2(-1)^{n+2}$
Proof done!

Here's Another

• Suppose that the sequence a_n is as follows:

$$a_n = \begin{cases} 12, & n = 0\\ 29, & n = 1\\ 5a_{n-1} - 6a_{n-2}, & n \ge 2 \end{cases}$$

• Then, prove that $a_n = 5 \cdot 3^n + 7 \cdot 2^n$, $\forall n \in \mathbb{N}$

Inductive Base

- Let the statement to be proven be called P(n). We proceed via strong induction on n.
- Inductive base: We want to prove P(0), P(1).
 - For n = 0, P(0) is $s_0 = 5 \cdot 3^0 + 7 \cdot 2^0 \Leftrightarrow 12 = 12$
 - For n = 1, P(1) is $s_1 = 5 \cdot 3^1 + 7 \cdot 2^1 \Leftrightarrow 29 = 15 + 14$

So the inductive base has been established!

Inductive Hypothesis

• Inductive Hypothesis: Let $n \ge 1$. Then, we <u>assume</u> that, for all i = 0, 1, ..., n, P(i) holds, i.e

$$a_i = 5 \cdot 3^i + 7 \cdot 2^i$$
, $i = 0, 1, ..., n$

Inductive Step

• Inductive Step: We will attempt to prove P(n + 1), i.e.

$$a_{n+1} = 5 \cdot 3^{n+1} + 7 \cdot 2^{n+1}$$

Inductive Step

• Inductive Step: We will attempt to prove P(n + 1), i.e.

$$a_{n+1} = 5 \cdot 3^{n+1} + 7 \cdot 2^{n+1}$$

- Since (n ≥ 1), (n + 1 ≥ 2) and we can use the recursive definition of a.
- From the recursive definition of *a* we have:

$$a_{n+1} = 5a_n - 6a_{n-1} \stackrel{I.H}{=} 5(5 \cdot 3^n + 7 \cdot 2^n) - 6(5 \cdot 3^{n-1} + 7 \cdot 2^{n-1})$$

= 25 \cdot 3^n + 35 \cdot 2^n - 30 \cdot 3^{n-1} - 42 \cdot 2^{n-1}
= 5 \cdot (5 \cdot 3^n - 2 \cdot 3^n) + 7(5 \cdot 2^n - 3 \cdot 2^n) = 5 \cdot 3^{n+1} + 7 \cdot 2^{n+1} \cdot 2

Inductive Step

• Inductive Step: We will attempt to prove P(n + 1), i.e.

$$a_{n+1} = 5 \cdot 3^{n+1} + 7 \cdot 2^{n+1}$$

- Since $(n \ge 1)$, $(n + 1 \ge 2)$ and we can use the recursive definition of a.
- From the recursive definition of *a* we have:

$$a_{n+1} = 5a_n - 6a_{n-1} \stackrel{I.H}{=} 5(5 \cdot 3^n + 7 \cdot 2^n) - 6(5 \cdot 3^{n-1} + 7 \cdot 2^{n-1})$$

= 25 \cdot 3^n + 35 \cdot 2^n - 30 \cdot 3^{n-1} - 42 \cdot 2^{n-1}
= 5 \cdot (5 \cdot 3^n - 2 \cdot 3^n) + 7(5 \cdot 2^n - 3 \cdot 2^n) = 5 \cdot 3^{n+1} + 7 \cdot 2^{n+1} \cdot 1

Since we need factors of 5 and 7 in our result, we force them to appear and our lives automatically become easier!

A Sequence Problem for You!

• Let a_n be defined as:

$$a_n = \begin{cases} 5, & n = 0\\ 16, & n = 1\\ 7a_{n-1} - 10a_{n-2}, & n \ge 2 \end{cases}$$

- Prove that $a_n = 3 \cdot 2^n + 2 \cdot 5^n$
- Breakout Rooms

Another Sequence Problem

• Let a_n be defined as:

$$a_n = \begin{cases} 3, & n = 0\\ 5, & n = 1\\ 3a_{n-1} - 2a_{n-2}, & n \ge 2 \end{cases}$$

• Prove that $a_n = 2^{n+1} + 1$

Important Note

• In our proofs on recurrences, P(n + 1) dependent on stuff such as

P(n), P(n-1), P(n-2), ...

• It is possible (and common) for P(n + 1) to depend on

$$P\left(\binom{(n+1)}{2}, P\left(\binom{(n+1)}{3}, P(\sqrt{n+1}) \dots\right)\right)$$

Important Note

• In our proofs on recurrences, P(n + 1) dependent on stuff such as

P(n), P(n-1), P(n-2), ...

• It is possible (and common) for P(k + 1) to depend on

$$P\left(\binom{(n+1)}{2}, P\left(\binom{(n+1)}{3}, P(\sqrt{n+1}) \dots\right)\right)$$

STOP RECORDING