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Strong Induction: The Principle

• The goal is the same: We want to prove a statement 𝑃𝑃 𝑛𝑛 ∀𝑛𝑛 ≥ 0
• The principle has, once again, two presuppositions. If:
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Strong Induction: The Principle
• The goal is the same: We want to prove a statement 𝑃𝑃 𝑛𝑛 ∀𝑛𝑛 ≥ 0
• The principle has, once again, two presuppositions. If:

a) 𝑃𝑃 0 ,𝑃𝑃 1 , … ,𝑃𝑃(𝑎𝑎) are true
b) For 𝑛𝑛 ≥ 𝑎𝑎,
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• Then, we have ∀𝑛𝑛 [𝑃𝑃(𝑛𝑛)]

• If you plug in 𝑛𝑛 = 𝑎𝑎 you get 𝑃𝑃(𝑎𝑎) holds, which we already know
• ∀𝑛𝑛 ≥ 𝑎𝑎 + 1 → P(a+1)
• Then P(a+1) is true. We can continue with P(a+2), P(a+3), ….
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How We’ll Make it Work

1. Inductive base: We will explicitly prove  (no matter how easy it might initially 
seem) that 

𝑃𝑃 0 ,𝑃𝑃 1 ,𝑃𝑃 2 , … ,𝑃𝑃 𝑎𝑎

2. Inductive hypothesis: For 𝑛𝑛 ≥ 𝑎𝑎 and for every 𝑖𝑖: 0 ≤ 𝑖𝑖 ≤ 𝑛𝑛, we will 
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Utility of Strong Induction

• Enormous
• Correctness of algorithms
• Growth of structures like trees, graphs, lists, strings, sets

• Terrifically useful in sequences
• How many ways have we talked about that can be used to describe a 

sequence?

• Also useful in the study of algorithm correctness`.

1 2 3 4

1. Outlining terms
2. Recursive definition
3. Closed-form formula 
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Inductive Base

• For 𝑛𝑛 = 0, 𝑎𝑎0 = 1 by the definition of 𝑎𝑎. 𝑃𝑃(0) says: 𝑎𝑎0 = 3 ⋅ 20 + 2 −1 1 = 3 − 2 = 1. 
So 𝑃𝑃(0) holds.

• For n = 1, 𝑎𝑎1 = 8 by the definition of 𝑎𝑎. 𝑃𝑃(1) says: 𝑎𝑎1 = 3 ⋅ 21 + 2 −1 2 = 6 + 2 = 8.
So P(1) holds. 

𝑃𝑃 𝑛𝑛 ⇔ 𝑎𝑎𝑛𝑛 = 3 ⋅ 2𝑛𝑛 + 2 −1 𝑛𝑛+1
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• For 𝑛𝑛 = 0, 𝑎𝑎0 = 1 by the definition of 𝑎𝑎. 𝑃𝑃(0) says: 𝑎𝑎0 = 3 ⋅ 20 + 2 −1 1 = 3 − 2 = 1. 
So 𝑃𝑃(0) holds.

• For n = 1, 𝑎𝑎1 = 8 by the definition of 𝑎𝑎. 𝑃𝑃(1) says: 𝑎𝑎1 = 3 ⋅ 21 + 2 −1 2 = 6 + 2 = 8.
So P(1) holds. 

𝑃𝑃 𝑛𝑛 ⇔ 𝑎𝑎𝑛𝑛 = 3 ⋅ 2𝑛𝑛 + 2 −1 𝑛𝑛+1

Inductive Base 
established!

𝑎𝑎𝑛𝑛 = �
1, 𝑛𝑛 = 0
8, 𝑛𝑛 = 1
𝑎𝑎𝑛𝑛−1 + 2 ⋅ 𝑎𝑎𝑛𝑛−2, 𝑛𝑛 ≥ 2



Inductive Hypothesis

• Suppose 𝑛𝑛 = 𝑘𝑘 ≥ 1. Then, ∀𝑖𝑖 ∈ {0, 1, … ,𝑛𝑛} assume 𝑃𝑃 𝑖𝑖 , i.e

𝑎𝑎𝑖𝑖 = 3 ⋅ 2𝑖𝑖 + 2 −1 𝑖𝑖+1, 𝑖𝑖 = 0, 1, … ,𝑛𝑛

0 1𝑃𝑃( 𝑃𝑃() )
𝑃𝑃 𝑛𝑛 ⇔ 𝑎𝑎𝑛𝑛 = 3 ⋅ 2𝑛𝑛 + 2 −1 𝑛𝑛+1
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Inductive Hypothesis

• Suppose 𝑛𝑛 = 𝑘𝑘 ≥ 1. Then, ∀𝑖𝑖 ∈ {0, 1, … ,𝑛𝑛} assume 𝑃𝑃 𝑖𝑖 , i.e

𝑎𝑎𝑖𝑖 = 3 ⋅ 2𝑖𝑖 + 2 −1 𝑖𝑖+1, 𝑖𝑖 = 0, 1, … ,𝑛𝑛

0 1𝑃𝑃( 𝑃𝑃() )

Inductive Hypothesis 
made!

𝑃𝑃 𝑛𝑛 ⇔ 𝑎𝑎𝑛𝑛 = 3 ⋅ 2𝑛𝑛 + 2 −1 𝑛𝑛+1

𝑎𝑎𝑛𝑛 = �
1, 𝑛𝑛 = 0
8, 𝑛𝑛 = 1
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Inductive Step

• We will now prove 𝑃𝑃 𝑛𝑛 + 1 , i.e

𝑎𝑎𝑛𝑛+1 = 3 ⋅ 2𝑛𝑛+1 + 2 −1 𝑛𝑛+2

0 1𝑃𝑃( 𝑃𝑃() )
𝑃𝑃 𝑛𝑛 ⇔ 𝑎𝑎𝑛𝑛 = 3 ⋅ 2𝑛𝑛 + 2 −1 𝑛𝑛+1

𝑃𝑃 𝑖𝑖 ∀𝑖𝑖 = 0,1, …𝑛𝑛

𝑎𝑎𝑛𝑛 = �
1, 𝑛𝑛 = 0
8, 𝑛𝑛 = 1
𝑎𝑎𝑛𝑛−1 + 2 ⋅ 𝑎𝑎𝑛𝑛−2, 𝑛𝑛 ≥ 2



Inductive Step

• Since 𝒏𝒏 ≥ 𝟏𝟏 ⇒ 𝒏𝒏 + 𝟏𝟏 ≥ 𝟐𝟐, we can apply the recursive rule of the sequence.
• From the recursive definition of 𝑎𝑎𝑛𝑛, we obtain:

𝑎𝑎𝑛𝑛+1 = 𝑎𝑎𝑛𝑛 + 2 ⋅ 𝑎𝑎𝑛𝑛−1 =𝐼𝐼.𝐻𝐻 3 ⋅ 2𝑛𝑛 + 2 −1 𝑛𝑛+1 + 2 ⋅ 3 ⋅ 2𝑛𝑛−1 + 2 −1 𝑛𝑛 =
= 3 ⋅ 2𝑛𝑛 + 2 ⋅ 2𝑛𝑛−1 + 2 ⋅ −1 𝑛𝑛[−1 + 2] =

= 3 ⋅ 2 ⋅ 2𝑛𝑛 + 2 ⋅ −1 𝑛𝑛 = 3 ⋅ 2𝑛𝑛+1 + 2 −1 𝑛𝑛+2

𝑃𝑃 𝑛𝑛 ⇔ 𝑎𝑎𝑛𝑛 = 3 ⋅ 2𝑛𝑛 + 2 −1 𝑛𝑛+1

0 1𝑃𝑃( 𝑃𝑃() )

My goal: Prove 𝑃𝑃 𝑛𝑛 + 1 : 𝑎𝑎𝑛𝑛+1 = 3 ⋅ 2𝑛𝑛+1 + 2 −1 𝑛𝑛+2

𝑎𝑎𝑛𝑛 = �
1, 𝑛𝑛 = 0
8, 𝑛𝑛 = 1
𝑎𝑎𝑛𝑛−1 + 2 ⋅ 𝑎𝑎𝑛𝑛−2, 𝑛𝑛 ≥ 2

𝑃𝑃 𝑖𝑖 ∀𝑖𝑖 = 0,1, …𝑛𝑛



Inductive Step

• Since 𝒏𝒏 ≥ 𝟏𝟏 ⇒ 𝒏𝒏 + 𝟏𝟏 ≥ 𝟐𝟐, we can apply the recursive rule of the sequence.
• From the recursive definition of 𝑎𝑎𝑛𝑛, we obtain:

𝑎𝑎𝑛𝑛+1 = 𝑎𝑎𝑛𝑛 + 2 ⋅ 𝑎𝑎𝑛𝑛−1 =𝐼𝐼.𝐻𝐻 3 ⋅ 2𝑛𝑛 + 2 −1 𝑛𝑛+1 + 2 ⋅ 3 ⋅ 2𝑛𝑛−1 + 2 −1 𝑛𝑛 =
= 3 ⋅ 2𝑛𝑛 + 2 ⋅ 2𝑛𝑛−1 + 2 ⋅ −1 𝑛𝑛[−1 + 2] =

= 3 ⋅ 2 ⋅ 2𝑛𝑛 + 2 ⋅ −1 𝑛𝑛 = 3 ⋅ 2𝑛𝑛+1 + 2 −1 𝑛𝑛+2

𝑃𝑃 𝑛𝑛 ⇔ 𝑎𝑎𝑛𝑛 = 3 ⋅ 2𝑛𝑛 + 2 −1 𝑛𝑛+1
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𝑃𝑃 𝑖𝑖 ∀𝑖𝑖 = 0,1, …𝑛𝑛
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Inductive Step

• Since 𝒏𝒏 ≥ 𝟏𝟏 ⇒ 𝒏𝒏 + 𝟏𝟏 ≥ 𝟐𝟐, we can apply the recursive rule of the sequence.
• From the recursive definition of 𝑎𝑎𝑛𝑛, we obtain:
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𝑃𝑃 𝑖𝑖 ∀𝑖𝑖 = 0,1, …𝑛𝑛

Proof done!



Here’s Another

• Suppose that the sequence 𝑎𝑎𝑛𝑛 is as follows:

𝑎𝑎𝑛𝑛 = �
12, 𝑛𝑛 = 0
29, 𝑛𝑛 = 1
5𝑎𝑎𝑛𝑛−1 − 6𝑎𝑎𝑛𝑛−2, 𝑛𝑛 ≥ 2

• Then, prove that 𝑎𝑎𝑛𝑛 = 5 ⋅ 3𝑛𝑛 + 7 ⋅ 2𝑛𝑛,∀𝑛𝑛 ∈ ℕ



Inductive Base

• Let the statement to be proven be called 𝑃𝑃(𝑛𝑛). We proceed via strong 
induction on 𝑛𝑛. 

• Inductive base: We want to prove 𝑃𝑃 0 ,𝑃𝑃(1). 
• For 𝑛𝑛 = 0,𝑃𝑃 0 is 𝑠𝑠0 = 5 ⋅ 30 + 7 ⋅ 20 ⇔ 12 = 12
• For 𝑛𝑛 = 1,𝑃𝑃 1 is 𝑠𝑠1 = 5 ⋅ 31 + 7 ⋅ 21 ⇔ 29 = 15 + 14

So the inductive base has been established!



Inductive Hypothesis

• Inductive Hypothesis: Let 𝑛𝑛 ≥ 1. Then, we assume that, for all 𝑖𝑖 =
0,1, … ,𝑛𝑛,𝑃𝑃 𝑖𝑖 holds, i.e

𝑎𝑎𝑖𝑖 = 5 ⋅ 3𝑖𝑖 + 7 ⋅ 2𝑖𝑖 , 𝑖𝑖 = 0,1, … ,𝑛𝑛



Inductive Step
• Inductive Step: We will attempt to prove 𝑃𝑃(𝑛𝑛 + 1), i.e

𝑎𝑎𝑛𝑛+1 = 5 ⋅ 3𝑛𝑛+1+ 7 ⋅ 2𝑛𝑛+1



Inductive Step
• Inductive Step: We will attempt to prove 𝑃𝑃(𝑛𝑛 + 1), i.e

𝑎𝑎𝑛𝑛+1 = 5 ⋅ 3𝑛𝑛+1+ 7 ⋅ 2𝑛𝑛+1

• Since 𝑛𝑛 ≥ 1 , (𝑛𝑛 + 1 ≥ 2) and we can use the recursive definition of 
𝑎𝑎. 

• From the recursive definition of 𝑎𝑎 we have:

𝑎𝑎𝑛𝑛+1 = 5𝑎𝑎𝑛𝑛 − 6𝑎𝑎𝑛𝑛−1 =𝐼𝐼.𝐻𝐻 5 5 ⋅ 3𝑛𝑛 + 7 ⋅ 2𝑛𝑛 − 6 5 ⋅ 3𝑛𝑛−1 + 7 ⋅ 2𝑛𝑛−1
= 25 ⋅ 3𝑛𝑛 + 35 ⋅ 2𝑛𝑛 − 30 ⋅ 3𝑛𝑛−1 − 42 ⋅ 2𝑛𝑛−1
= 5 ⋅ 5 ⋅ 3𝑛𝑛 − 2 ⋅ 3𝑛𝑛 + 7 5 ⋅ 2𝑛𝑛 − 3 ⋅ 2𝑛𝑛 = 5 ⋅ 3𝑛𝑛+1 + 7 ⋅ 2𝑛𝑛+1 □



Inductive Step
• Inductive Step: We will attempt to prove 𝑃𝑃(𝑛𝑛 + 1), i.e

𝑎𝑎𝑛𝑛+1 = 5 ⋅ 3𝑛𝑛+1+ 7 ⋅ 2𝑛𝑛+1

• Since 𝑛𝑛 ≥ 1 , (𝑛𝑛 + 1 ≥ 2) and we can use the recursive definition of 𝑎𝑎. 
• From the recursive definition of 𝑎𝑎 we have:

𝑎𝑎𝑛𝑛+1 = 5𝑎𝑎𝑛𝑛 − 6𝑎𝑎𝑛𝑛−1 =
𝐼𝐼.𝐻𝐻

5 5 ⋅ 3𝑛𝑛 + 7 ⋅ 2𝑛𝑛 − 6 5 ⋅ 3𝑛𝑛−1 + 7 ⋅ 2𝑛𝑛−1
= 25 ⋅ 3𝑛𝑛 + 35 ⋅ 2𝑛𝑛 − 30 ⋅ 3𝑛𝑛−1 − 42 ⋅ 2𝑛𝑛−1
= 5 ⋅ 5 ⋅ 3𝑛𝑛 − 2 ⋅ 3𝑛𝑛 + 7 5 ⋅ 2𝑛𝑛 − 3 ⋅ 2𝑛𝑛 = 5 ⋅ 3𝑛𝑛+1 + 7 ⋅ 2𝑛𝑛+1 □

Since we need factors of 5 and 7 in our result, we force them to appear and our lives automatically become easier!



A Sequence Problem for You!

• Let 𝑎𝑎𝑛𝑛 be defined as:

𝑎𝑎𝑛𝑛 = �
5, 𝑛𝑛 = 0
16, 𝑛𝑛 = 1
7𝑎𝑎𝑛𝑛−1 − 10𝑎𝑎𝑛𝑛−2, 𝑛𝑛 ≥ 2

• Prove that 𝑎𝑎𝑛𝑛 = 3 ⋅ 2𝑛𝑛 + 2 ⋅ 5𝑛𝑛

• Breakout Rooms



Another Sequence Problem

• Let 𝑎𝑎𝑛𝑛 be defined as:

𝑎𝑎𝑛𝑛 = �
3, 𝑛𝑛 = 0
5, 𝑛𝑛 = 1
3𝑎𝑎𝑛𝑛−1 − 2𝑎𝑎𝑛𝑛−2, 𝑛𝑛 ≥ 2

• Prove that 𝑎𝑎𝑛𝑛 = 2𝑛𝑛+1 + 1



Important Note

• In our proofs on recurrences, 𝑃𝑃(𝑛𝑛 + 1) dependent on stuff such as 

𝑃𝑃 𝑛𝑛 ,𝑃𝑃 𝑛𝑛 − 1 ,𝑃𝑃 𝑛𝑛 − 2 , …

• It is possible (and common) for 𝑃𝑃(𝑛𝑛 + 1) to depend on 

𝑃𝑃 �(𝑛𝑛 + 1)
2 ,𝑃𝑃 �(𝑛𝑛 + 1)

3 ,𝑃𝑃( 𝑛𝑛 + 1) …
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𝑃𝑃 𝑛𝑛 ,𝑃𝑃 𝑛𝑛 − 1 ,𝑃𝑃 𝑛𝑛 − 2 , …

• It is possible (and common) for 𝑃𝑃(𝑘𝑘 + 1) to depend on 

𝑃𝑃 �(𝑛𝑛 + 1)
2 ,𝑃𝑃 �(𝑛𝑛 + 1)
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