START

 RECORDING
Sequences, Series and

Summation / Product Notation

CMSC 250

Sequences and Series

- A sequence is a function from the naturals to the complex numbers (but we often use reals).
- Typical notation: $a: \mathbb{N} \rightarrow \mathbb{C}$

Sequences and Series

- A sequence is a function from the naturals to the complex numbers (but we often use reals).
- Typical notation: $a: \mathbb{N} \rightarrow \mathbb{C}$
- Examples:

Sequences and Series

- A sequence is a function from the naturals to the complex numbers (but we often use reals).
- Typical notation: $a: \mathbb{N} \rightarrow \mathbb{C}$
- Examples:
- $1,2,3,4,5$, ...
- $1.5,2.5,3.5, \ldots$

Outlining terms

- 1, 1, 1, 1,
- $\sqrt{2}, \sqrt{3}, \sqrt{4}, \sqrt{5}, \sqrt{6}, \sqrt{7}$.

Sequences and Series

- A sequence is a function from the naturals to the complex numbers (but we often use reals).
- Typical notation: $a: \mathbb{N} \rightarrow \mathbb{C}$
- Examples:
- $1,2,3,4,5, \ldots$
- 1.5, 2.5, 3.5, ...

Outlining terms

- 1, 1, 1, 1 ,
- $\sqrt{2}, \sqrt{3}, \sqrt{4}, \sqrt{5}, \sqrt{6}, \sqrt{7}$.
- $a_{n}=2^{n}, n=0,1,2, \ldots$
- $b_{k}=\log k+2 k, k=1,2,3$

Sequences and Series

: A sequence is a function from the naturals to the complex numbers (but we often use reals).

- Typical notation: $a: \mathbb{N} \rightarrow \mathbb{C}$
- Examples:
- $1,2,3,4,5, \ldots$
- 1.5, 2.5, 3.5, ..
- 1, 1, 1, 1 ,
- $\sqrt{2}, \sqrt{3}, \sqrt{4}, \sqrt{5}, \sqrt{6}, \sqrt{7}$..
- $a_{n}=2^{n}, n=0,1,2, \ldots$
- $b_{k}=\log k+2 k, k=1,2,3, \ldots$

"Closed form"
- $F_{n}=\left\{\begin{array}{c}1, \quad \text { if } n=0,1 \\ F_{n-1}+F_{n-2}, \text { if } n \geq 2\end{array}\right.$
- $T_{n}=\left\{\begin{array}{l}1, \\ 2, \\ T_{n-1}+T_{n-2}+T_{n-3}\end{array}\right.$
if $n=1,2$
if $n=3$
formula

Sequences and Series

: A sequence is a function from the naturals to the complex numbers (but we often use reals).

- Typical notation: $a: \mathbb{N} \rightarrow \mathbb{C}$
- Examples:
- $1,2,3,4,5, \ldots$
- 1.5, 2.5, 3.5, ..
- 1, 1, 1, 1,
- $\sqrt{2}, \sqrt{3}, \sqrt{4}, \sqrt{5}, \sqrt{6}, \sqrt{7}$..
- $a_{n}=2^{n}, n=0,1,2, \ldots$
- $b_{k}=\log k+2 k, k=1,2,3, \ldots$

"Closed form"
- $F_{n}=\left\{\begin{array}{c}1, \quad \text { if } n=0,1 \\ F_{n-1}+F_{n-2}, \text { if } n \geq 2\end{array}\right.$
formula
- $T_{n}=\left\{\begin{array}{l}1, \\ 2, \\ T_{n-1}+T_{n-2}+T_{n-3}\end{array}\right.$
if $n=1,2$
if $n=3$
if $n \geq 4$

All of those are valid ways to describe a sequence!

Recursion: Good Idea?

- Example: Fibonacci

$$
F_{n}=\left\{\begin{array}{cr}
1, & \text { if } n=0,1 \\
F_{n-1}+F_{n-2}, & \text { if } n \geq 2
\end{array}\right.
$$

- We can use recursion to compute, say, F_{1000}
- Is it a good idea?

Recursion: Good Idea?

- Example: Fibonacci

$$
F_{n}=\left\{\begin{array}{cr}
1, & \text { if } n=0,1 \\
F_{n-1}+F_{n-2}, & \text { if } n \geq 2
\end{array}\right.
$$

- We can use recursion to compute, say, F_{1000}
- Is it a good idea?

- Recomputing terms + hidden memory cost of recursion!

Recursion: Done Right

- Is there a better way to compute F_{1000} ?

Recursion: Done Right

- Is there a better way to compute F_{1000} ?

1. Store the values of $F_{0}=1, F_{1}=1$ in an array A .
2. for $\mathrm{i}=2$ to 1000

$$
\begin{aligned}
& F_{i}=A[i-1]+A[i-2] \\
& A[i]=F_{i}
\end{aligned}
$$

end

- This is a very elementary example of a very useful technique called dynamic programming.

Closed Formula for Fibonacci

- The closed-form formula for F_{n} is:

$$
F_{n}=\frac{1}{\sqrt{5}} \underbrace{\left.\frac{1+\sqrt{5}}{2}\right)^{n}}_{\phi}-\frac{1}{\sqrt{5}}(\underbrace{\left.\frac{1-\sqrt{5}}{2}\right)^{n}}_{\psi}
$$

- Roughly: $F_{n} \approx \phi^{n} \approx(1.618)^{n}$

Recursion vs Closed Formula

1. Computation:

- Recursion leads to a fast dynamic program.
- Classic recursion is elegant.
- Closed form: faster, but numerical issues arise.

2. Rate of growth:

- Recursion gives no hint as to how big F_{n} is.
- Closed form yields $F_{n} \approx(1.618)^{n}$

Summation Notation

- Suppose I have some terms of a sequence, let's say $a_{1}, a_{2}, a_{3}, \ldots, a_{k}$.
- Their sum, $a_{1}+a_{2}+a_{3}+\cdots+a_{k}$ is denoted as:

$$
\sum_{i=1}^{k} a_{i}
$$

Summation Notation

- Suppose I have some terms of a sequence, let's say $a_{1}, a_{2}, a_{3}, \ldots, a_{k}$.
- Their sum, $a_{1}+a_{2}+a_{3}+\cdots+a_{k}$ is denoted as:

Examples

$$
\begin{aligned}
& \sum_{i=1}^{2} a_{i}=a_{1}+a_{2} \\
& \sum_{i=1}^{1} a_{i}=a_{1} \\
& \sum_{i=1}^{0} a_{i}=?
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \sum_{i=1}^{2} a_{i}=a_{1}+a_{2} \\
& \sum_{i=1}^{1} a_{i}=a_{1} \\
& \sum_{i=1}^{0} a_{i}=?
\end{aligned}
$$

$$
\sum_{i=1}^{0} a_{i}=0
$$

- Two reasons for this:
a) (Intuitive) If you add together 0 things, you get 0 . Duh.

$$
\sum_{i=1}^{0} a_{i}=0
$$

- Two reasons for this:
a) (Intuitive) If you add together 0 things, you get 0 . Duh.
b) (Mathematical) The following formula should work regardless of our choice of integer variable n_{1} :

$$
\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n_{1}} a_{i}+\sum_{i=n_{1}+1}^{n} a_{i}
$$

$$
\sum_{i=1}^{0} a_{i}=0
$$

- Two reasons for this:
a) (Intuitive) If you add together 0 things, you get 0 . Duh.
b) (Mathematical) The following formula should work regardless of our choice of integer variable n_{1} :

$$
\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n_{1}} a_{i}+\sum_{i=n_{1}+1}^{n} a_{i}
$$

So what happens if we pick $n_{1}=0$?

$$
\sum_{i=1}^{0} a_{i}=0
$$

- Two reasons for this:
a) (Intuitive) If you add together 0 things, you get 0 . Duh.
b) (Mathematical) The following formula should work regardless of our choice of integer variable n_{1} :

$$
\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n_{1}} a_{i}+\sum_{i=n_{1}+1}^{n} a_{i}
$$

So what happens if we pick $n_{1}=0$?
Then, for this to work, it's necessary that $\sum_{i=1}^{0} a_{i}=0$

Product Notation

- The product, $a_{1} \cdot a_{2} \cdot \ldots \cdot a_{k}$ is denoted as:

Index of term with which the product begins

$$
\prod_{i=1}^{0} a_{i}=\cdots
$$

$$
\prod_{i=1}^{0} a_{i}=\cdots
$$

$$
\prod_{i=1}^{0} a_{i}=1
$$

- The following formula has to work for all choices of $n_{1} \in \mathbb{N}$:

$$
\prod_{i=1}^{n} a_{i}=\prod_{i=1}^{n_{1}} a_{i} \cdot \prod_{i=n_{1}+1}^{n} a_{i}
$$

- So, for $n_{1}=0$, we need $\prod_{i=1}^{0} a_{i}=1$

Sum / Product Notation

- Suppose I have some terms of a sequence, let's say $a_{1}, a_{2}, a_{3}, \ldots, a_{k}$.
- Their sum, $a_{1}+a_{2}+a_{3}+\cdots+a_{k}$ is denoted as:

- Their product, $a_{1} \cdot a_{2} \cdot \ldots \cdot a_{k}$ is denoted as:

Sum / Product Notation

- Suppose I have some terms of a sequence, let's say $a_{1}, a_{2}, a_{3}, \ldots, a_{k}$.
- Their sum, $a_{1}+a_{2}+a_{3}+\cdots+a_{k}$ is denoted as:

- Their product, $a_{1} \cdot a_{2} \cdot \ldots \cdot a_{k}$ is denoted as:

Index of term with which the product begins

Index of last term to be included in the product

Sum / Product Notation

- Suppose I have some terms of a sequence, let's say $a_{1}, a_{2}, a_{3}, \ldots, a_{k}$.
- Their sum, $a_{1}+a_{2}+a_{3}+\cdots+a_{k}$ is denoted as:

"Running" (or "looping" indices can be anything we want! (i, j, k, \ldots) as long as I
use the same variable in the Σ and Π
- Their product, $a_{1} \cdot a_{2} \cdot \ldots \cdot a_{k}$ is denoted as: symbols and the variable representing the sequence term!

Sum-Product Notation

- We can have certain exclusionary conditions under the Σ and Π symbols.
- Examples:

Series and Partial Sums

- A series is the sum of all elements of an infinite sequence.

$$
\begin{aligned}
& \sum_{i=0}^{+\infty} a_{i}=a_{0}+a_{1}+a_{2}+\cdots \\
& \text { Or } 1, \text { if we start at } 1
\end{aligned}
$$

- A partial sum of a sequence, denoted S_{n}, is the sum ranging from the first up to (and including) the $n^{\text {th }}$ term of a (usually infinite) sequence:

$$
\begin{gathered}
S_{n}=\sum_{i=0}^{n} a_{i}=a_{0}+a_{1}+a_{2}+\cdots+a_{n} \\
\text { Or 1, if we start at } 1
\end{gathered}
$$

Famous Sequences

- Arithmetic (often called the arithmetic progression):

$$
a_{0}, \underbrace{a_{0}+d}_{\alpha_{1}}, \underbrace{a_{1}+d}_{\alpha_{2}}, \underbrace{a_{2}+d}_{\alpha_{3}} \ldots \text { where } d \in \mathbb{R}
$$

Famous Sequences

- Arithmetic (often called the arithmetic progression):

$$
a_{0}, \underbrace{a_{0}+d}_{\alpha_{1}}, \underbrace{a_{1}+d}_{\alpha_{2}}, \underbrace{a_{2}+d}_{\alpha_{3}} \ldots \text { where } d \in \mathbb{R}
$$

- Question: which among the following is the correct characterization for a_{n} ?

```
d}\cdot\mp@subsup{a}{n-1}{
```


$$
\alpha_{0}+(n-1) \cdot d
$$

Famous Sequences

- Arithmetic (often called the arithmetic progression):

- Question: which among the following is the correct characterization for a_{n} ?

```
d}\cdot\mp@subsup{a}{n-1}{
```


A Question for You

- In the arithmetic progression:

$$
a_{0}, a_{0}+d, a_{1}+d, a_{2}+d \ldots \text { where } d \in \mathbb{R}
$$

- Should we allow $d=0$?

A Question for You

- In the arithmetic progression:

$$
a_{0}, a_{0}+d, a_{1}+d, a_{2}+d \ldots \text { where } d \in \mathbb{R}
$$

- Should we allow $d=0$?

Famous Sequences

- Geometric sequence (or progression):

Famous Sequences

- Geometric sequence (or progression):

- Question: which among the following is the correct characterization for a_{n} ?

$$
(m-1)^{n} \cdot a_{0}
$$

Famous Sequences

- Geometric sequence (or progression):

- Question: which among the following is the correct characterization for a_{n} ?

The Gauss Story

- Gauss was a great mathematician (1777-1855)
- When Gauss was in $1^{\text {st }}$ grade, the class was misbehaving.
- For punishment, the teacher made everyone compute

$$
1+2+\cdots+100
$$

- Gauss did it in 2 minutes. Can you?

The Gauss Trick

$$
\begin{aligned}
& S=1+2+\cdots+100 \\
& S=100+99+\cdots+1 \\
& 2 S=101+101+\cdots+101 \\
& \Rightarrow 2 S=101 * 100=10100 \Rightarrow S=5050
\end{aligned}
$$

And Now the Rest of the Story

And Now the Rest of the Story

- This is a complete fabrication!
- This is how this story has progressed over time:

And Now the Rest of the Story

- This is a complete fabrication!
- This is how this story has progressed over time:

And Now the Rest of the Story

- This is a complete fabrication!
- This is how this story has progressed over time:

YEAR	GRADE	SERIES
1960	$5^{\text {th }}$	$1+2+\ldots+60$

And Now the Rest of the Story

- This is a complete fabrication!
- This is how this story has progressed over time:

YEAR	GRADE	SERIES
1960	$5^{\text {th }}$	$1+2+\ldots+60$
1980	$3^{\text {rd }}$	$1+2+\ldots+80$

And Now the Rest of the Story

- This is a complete fabrication!
- This is how this story has progressed over time:

YEAR	GRADE	SERIES
1960	$5^{\text {th }}$	$1+2+\ldots+60$
1980	$3^{\text {rd }}$	$1+2+\ldots+80$
2000 s	$1^{\text {st }}$	$1+2+\ldots+100$

And Now the Rest of the Story

- This is a complete fabrication!
- This is how this story has progressed over time:

Our conjecture:

YEAR	GRADE	SERIES
1960	$5^{\text {th }}$	$1+2+\ldots+60$
1980	$3^{\text {rd }}$	$1+2+\ldots+80$
2000 s	$1^{\text {st }}$	$1+2+\ldots+100$
2020	Nursery School	$1+2+\ldots+120$

Famous Sequences

- Harmonic:

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots
$$

- Fibonacci: $F_{0}=F_{1}=1$ and $\forall n \geq 2, F_{n}=F_{n-1}+F_{n-2}$

$$
1,1,2,3,5,8,13,21, \ldots
$$

What We'll Do Next

- We will have an intro to induction.
- The following can be proven via induction:

$$
\begin{gathered}
\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \\
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
\end{gathered}
$$

STOP

