START RECORDING

Sequences, Series and Summation / Product Notation

CMSC 250

- A *sequence* is a *function* from the naturals to the complex numbers (but we often use reals).
 - Typical notation: $a: \mathbb{N} \to \mathbb{C}$

- A *sequence* is a *function* from the naturals to the complex numbers (but we often use reals).
 - Typical notation: $a: \mathbb{N} \to \mathbb{C}$
 - Examples:

• A *sequence* is a *function* from the naturals to the complex numbers (but we often use reals).

Outlining terms

- Typical notation: $a: \mathbb{N} \to \mathbb{C}$
- Examples:
 - 1, 2, 3, 4, 5, ...
 - 1.5, 2.5, 3.5, ...
 - 1, 1, 1, 1,
 - $\sqrt{2}, \sqrt{3}, \sqrt{4}, \sqrt{5}, \sqrt{6}, \sqrt{7}...$

- A *sequence* is a *function* from the naturals to the complex numbers (but we often use reals).
 - Typical notation: $a: \mathbb{N} \to \mathbb{C}$
 - Examples:
 - 1, 2, 3, 4, 5, ... • 1.5, 2.5, 3.5, ... • 1, 1, 1, 1, ... • $\sqrt{2}, \sqrt{3}, \sqrt{4}, \sqrt{5}, \sqrt{6}, \sqrt{7}...$ • $a_n = 2^n, n = 0, 1, 2, ...$ • $b_k = logk + 2k, k = 1, 2, 3, ...$ "Closed form" formula

- A *sequence* is a *function* from the naturals to the complex numbers (but we often use reals).
 - Typical notation: $a: \mathbb{N} \to \mathbb{C}$
 - Examples:

Sequence is a function from the naturals to the complex numbers (but we often use reals).

Recursion: Good Idea?

• Example: Fibonacci

$$F_n = \begin{cases} 1, & \text{if } n = 0, 1 \\ F_{n-1} + F_{n-2}, \text{if } n \ge 2 \end{cases}$$

- We *can* use recursion to compute, say, F_{1000}
- Is it a good idea?

Recursion: Good Idea?

• Example: Fibonacci

$$F_n = \begin{cases} 1, & \text{if } n = 0, 1 \\ F_{n-1} + F_{n-2}, \text{if } n \ge 2 \end{cases}$$

- We *can* use recursion to compute, say, F_{1000}
- Is it a good idea?

• Recomputing terms + hidden memory cost of recursion!

Recursion: Done Right

• Is there a better way to compute F_{1000} ?

Recursion: Done Right

• Is there a better way to compute F_{1000} ?

- 1. Store the values of $F_0 = 1$, $F_1 = 1$ in an array A.
- 2. for i = 2 to 1000

$$F_i = A[i-1] + A[i-2]$$
$$A[i] = F_i$$
end

 This is a very elementary example of a very useful technique called <u>dynamic programming</u>.

Closed Formula for Fibonacci

• The closed-form formula for F_n is:

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$

$$\phi \qquad \qquad \psi$$

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n$$

• Roughly: $F_n \approx \phi^n \approx (1.618)^n$

Recursion vs Closed Formula

1. Computation:

- Recursion leads to a fast dynamic program.
- Classic recursion is elegant.
- Closed form: faster, but numerical issues arise.
- 2. Rate of growth:
 - Recursion gives no hint as to how big F_n is.
 - Closed form yields $F_n \approx (1.618)^n$

Summation Notation

- Suppose I have some terms of a sequence, let's say $a_1, a_2, a_3, \dots, a_k$.
- Their sum, $a_1 + a_2 + a_3 + \dots + a_k$ is denoted as:

Summation Notation

- Suppose I have some terms of a sequence, let's say $a_1, a_2, a_3, \dots, a_k$.
- Their sum, $a_1 + a_2 + a_3 + \dots + a_k$ is denoted as:

Examples

$$\sum_{i=1}^{2} a_i = a_1 + a_2$$

$$\sum_{i=1}^{1} a_i = a_1$$

 $\sum_{i=1}^{0} a_i = ?$

Examples

1

Something

Else

$$\sum_{i=1}^{2} a_i = a_1 + a_2$$
$$\sum_{i=1}^{1} a_i = a_1$$
$$\sum_{i=1}^{0} a_i = ?$$

$$\sum_{i=1}^{0} a_i = 0$$

• Two reasons for this:

a) (*Intuitive*) If you add together 0 things, you get 0. Duh.

$$\sum_{i=1}^{0} a_i = 0$$

- Two reasons for this:
 - *a)* (*Intuitive*) If you add together 0 things, you get 0. Duh.
 - b) (Mathematical) The following formula should work regardless of our choice of integer variable n_1 :

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n_1} a_i + \sum_{i=n_1+1}^{n} a_i$$

$$\sum_{i=1}^{0} a_i = 0$$

- Two reasons for this:
 - *a)* (*Intuitive*) If you add together 0 things, you get 0. Duh.
 - b) (Mathematical) The following formula should work regardless of our choice of integer variable n_1 :

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n_1} a_i + \sum_{i=n_1+1}^{n} a_i$$

So what happens if we pick $n_1 = 0$?

$$\sum_{i=1}^{0} a_i = 0$$

- Two reasons for this:
 - a) (Intuitive) If you add together 0 things, you get 0. Duh.
 - b) (Mathematical) The following formula should work regardless of our choice of integer variable n_1 :

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n_1} a_i + \sum_{i=n_1+1}^{n} a_i$$

So what happens if we pick $n_1 = 0$? Then, for this to work, it's necessary that $\sum_{i=1}^{0} a_i = 0$

Product Notation

• The **product**, $a_1 \cdot a_2 \cdot ... \cdot a_k$ is denoted as:

$$\prod_{i=1}^{0} a_i = 1$$

• The following formula has to work for all choices of $n_1 \in \mathbb{N}$:

$$\prod_{i=1}^{n} a_i = \prod_{i=1}^{n_1} a_i \cdot \prod_{i=n_1+1}^{n} a_i$$

• So, for $n_1 = 0$, we need $\prod_{i=1}^{0} a_i = 1$

Sum / Product Notation

- Suppose I have some terms of a sequence, let's say $a_1, a_2, a_3, \dots, a_k$.
- Their sum, $a_1 + a_2 + a_3 + \dots + a_k$ is denoted as:

Sum / Product Notation

- Suppose I have some terms of a sequence, let's say $a_1, a_2, a_3, \dots, a_k$.
- Their sum, $a_1 + a_2 + a_3 + \dots + a_k$ is denoted as:

Sum / Product Notation

- Suppose I have some terms of a sequence, let's say $a_1, a_2, a_3, \dots, a_k$.
- Their sum, $a_1 + a_2 + a_3 + \dots + a_k$ is denoted as:

Sum-Product Notation

- We can have certain *exclusionary conditions* under the Σ and Π symbols.
- Examples:

Series and Partial Sums

• A *series* is the **sum** of **all** elements of an **infinite** sequence.

$$\sum_{i=0}^{+\infty} a_i = a_0 + a_1 + a_2 + \cdots$$
Or 1, if we start at 1

• A **partial sum** of a sequence, denoted S_n , is the sum ranging from the first up to (and including) the n^{th} term of a (usually infinite) sequence:

$$S_n = \sum_{i=0}^{n} a_i = a_0 + a_1 + a_2 + \dots + a_n$$

Or 1, if we start at 1

• Arithmetic (often called the arithmetic progression):

$$a_0, a_0 + d, a_1 + d, a_2 + d \dots$$
 where $d \in \mathbb{R}$
 $\alpha_1 \qquad \alpha_2 \qquad \alpha_3$

• Arithmetic (often called the arithmetic progression):

$$a_0, a_0 + d, a_1 + d, a_2 + d \dots$$
 where $d \in \mathbb{R}$
 $\alpha_1 \qquad \alpha_2 \qquad \alpha_3$

 Question: which among the following is the correct characterization for a_n?

$$d \cdot a_{n-1}$$
 $\alpha_0 + d \cdot a_{n-1}$ $\alpha_0 + n \cdot d$ $\alpha_0 + (n-1) \cdot d$

• Arithmetic (often called the arithmetic progression):

$$a_0, a_0 + d, a_1 + d, a_2 + d \dots$$
 where $d \in \mathbb{R}$
 $\alpha_1 \qquad \alpha_2 \qquad \alpha_3$

 Question: which among the following is the correct characterization for a_n?

$$d \cdot a_{n-1} \qquad \qquad \alpha_0 + d \cdot a_{n-1} \qquad \qquad \alpha_0 + n \cdot d \qquad \qquad \alpha_0 + (n-1) \cdot d$$

A Question for You

• In the arithmetic progression:

$$a_0, a_0 + d, a_1 + d, a_2 + d \dots$$
 where $d \in \mathbb{R}$

• Should we allow d = 0?

A Question for You

• In the arithmetic progression:

$$a_0, a_0 + d, a_1 + d, a_2 + d \dots$$
 where $d \in \mathbb{R}$

• Should we allow d = 0?

It will be a pretty boring sequence, but it will still be a sequence!

• Geometric sequence (or progression):

• Geometric sequence (or progression):

$$a_0, m \cdot a_0, m \cdot a_1, m \cdot a_2 \dots, \qquad m \in \mathbb{R}$$

$$\alpha_1 \qquad \alpha_2 \qquad \alpha_3$$

 Question: which among the following is the correct characterization for a_n?

$$(m-1)^n \cdot a_0 \qquad \qquad m^n a_0 \qquad \qquad m^{n-1} a_0 \qquad \qquad m \cdot n \cdot a_0$$

• Geometric sequence (or progression):

$$a_0, m \cdot a_0, m \cdot a_1, m \cdot a_2 \dots, \qquad m \in \mathbb{R}$$

$$\alpha_1 \qquad \alpha_2 \qquad \alpha_3$$

 Question: which among the following is the correct characterization for a_n?

$$(m-1)^n \cdot a_0 \qquad \qquad m^n a_0 \qquad \qquad m^{n-1}a_0 \qquad \qquad m \cdot n \cdot a_0$$

The Gauss Story

- Gauss was a great mathematician (1777-1855)
- When Gauss was in 1st grade, the class was misbehaving.
- For punishment, the teacher made everyone compute

 $1+2+\dots+100$

• Gauss did it in 2 minutes. Can you?

The Gauss Trick

$$S = 1 + 2 + \dots + 100$$

$$S = 100 + 99 + \dots + 1$$

$$2S = 101 + 101 + \dots + 101$$

100 terms

 $\Rightarrow 2S = 101 * 100 = 10100 \Rightarrow S = 5050$

- This is a **complete fabrication!**
- This is how this story has progressed over time:

- This is a **complete fabrication!**
- This is how this story has progressed over time:

YEAR	GRADE	SERIES
------	-------	--------

- This is a **complete fabrication!**
- This is how this story has progressed over time:

YEAR	GRADE	SERIES
1960	5 th	1 + 2 + + 60

- This is a complete fabrication!
- This is how this story has progressed over time:

YEAR	GRADE	SERIES
1960	5 th	1 + 2 + + 60
1980	3 rd	1 + 2 + + 80

- This is a complete fabrication!
- This is how this story has progressed over time:

YEAR	GRADE	SERIES
1960	5 th	1 + 2 + + 60
1980	3 rd	1 + 2 + + 80
2000s	1 st	1 + 2 + + 100

- This is a complete fabrication!
- This is how this story has progressed over time:

	YEAR	GRADE	SERIES
	1960	5 th	1 + 2 + + 60
	1980	3 rd	1 + 2 + + 80
	2000s	1 st	1 + 2 + + 100
re:	2020	Nursery School	1 + 2 + + 120

Our conjecture:

• Harmonic:

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$

• **Fibonacci**: $F_0 = F_1 = 1$ and $\forall n \ge 2$, $F_n = F_{n-1} + F_{n-2}$

1, 1, 2, 3, 5, 8, 13, 21, ...

What We'll Do Next

- We will have an intro to induction.
- The following can be proven via induction:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

ST()P RECORDING