Honors Homework 1

Morally Due Mon Feb 7 at 3:30PM. Dead Cat Feb 10 at 3:30 COURSE WEBSITE:
http://www.cs.umd.edu/~gasarch/COURSES/752/S22/index.html
(The symbol before gasarch is a tilde.)

1. (0 points) What is your name? Write it clearly.
2. (40 points)
(a) (10 points) You go to a room with 3 people A_{1}, A_{2}, A_{3}. 1 is normal and 2 are truth tellers. Ask YES-NO questions to them to try to determine who is who. Try to make the number of questions as small as possible. (Questions are sequential: Ask a question to A_{1}, and based on the answer decide who to ask what.)
(b) (10 points) You go to a room with 4 people $A_{1}, A_{2}, A_{3}, A_{4}$. 1 is normal and 3 are truth tellers. Ask YES-NO questions to them to try to determine who is who. Try to make the number of questions as small as possible. (Questions are sequential: Ask a question to A_{1}, and based on the answer decide who to ask what.)
(c) (20 points) You go to a room with n people A_{1}, \ldots, A_{n}. 1 is normal and $n-1$ are truth tellers. Ask YES-NO questions to them to try to determine who is who. Try to make the number of questions as small as possible. (Questions are sequential: Ask a question to A_{1}, and based on the answer decide who to ask what.)

GOTO NEXT PAGE

3. (30 points) For this problem we use the following definitions of \wedge, \vee, \neg and are using them on variables with values in $[0,1]$.

- $x \wedge y=x y$ (Multiplication)
- $x \vee y=x+y-x y$
- $\neg x=1-x$.

Let

$$
\phi(x, y, z)=(x \wedge \neg y) \vee z
$$

Describe the set of all (x, y, z) such that $\phi(x, y, z)$ evaluates to $\geq \frac{1}{2}$.
4. (30 points) For this problem we use the following definitions of \wedge, \vee, \neg and are using them on variables with values in $[0,1]$.

- $x \wedge y=\min \{x, y\}$
- $x \vee y=\max x, y$
- $\neg x=1-x$.

Let

$$
\phi(x, y, z)=(x \wedge \neg y) \vee z
$$

Describe the set of all (x, y, z) such that $\phi(x, y, z)$ evaluates to $\geq \frac{1}{2}$.

