Honors HW04. Morally DUE Mon Mar 28

A linear ordering L has the Levin property if the following hold:

- There exists a MIN element.

Formally

$$
(\exists x)(\forall y)[x \leq y] .
$$

In later problems we will call this $x M I N$.

- There exists a MAX element.

Formally

$$
(\exists y)(\forall x)[x \leq y] .
$$

In later problems we will call this $x M A X$.

- For all $y \neq M I N$ there is an element x such that $x<y$ and there is nothing inbetween x and y.
Formally

$$
(\forall y \neq M I N)(\exists x)[x<y \wedge(\forall z)[(z \leq x) \vee(z \geq y)]] .
$$

- For all $x \neq M A X$ there is an element y such that $x<y$ and there is nothing inbetween x and y.
Formally

$$
(\forall x \neq M A X)(\exists y)[x<y \wedge(\forall z)[(z \leq x) \vee(z \geq y)]]
$$

1. (50 points) Give an example of an ordering L with the Levin Property such that E wins the Emptier-Filler game with ordering L.
2. (50 points) Give an example of an ordering L with the Levin Property such that F wins the Emptier-Filler game with ordering L.
