Homework 2, MORALLY Due Feb 14

 WARNING: THIS HW IS FOUR PAGES LONG!!!!!!!!!!!!!!!!!1. (25 points)
(a) (10 points) Use truth table so show that

$$
\neg(p \vee q \vee r) \equiv \neg p \wedge \neg q \wedge \neg r
$$

(This is called DeMorgan's law on three variables.)
(b) (15 points) Consider the statement:

$$
\text { For all } n\left[\neg\left(p_{1} \vee \cdots \vee p_{n}\right) \equiv \neg p_{1} \wedge \cdots \wedge \neg p_{n}\right]
$$

Prove it. Note that you cannot use Truth Table since we want it for all n. Do not use Induction (later when we learn induction we will do that). Use reasoning about what the truth table for both sides must look like.

GOTO NEXT PAGE
2. (25 points -5 points each) For each of the following statements write the negation without using any negations signs.
(a) $x=4$
(b) $x_{1} \leq x_{2} \leq x_{3} \leq x_{4}$
(c) $x \geq 5$ AND $x \geq 10$

GOTO NEXT PAGE
3. (35 points) Let $n \in \mathrm{~N}$. $\operatorname{NSQ}(n)$ is the least number such that n can be written as the sum of NSQ (n) squares. Clearly $\operatorname{NSQ}(n) \leq n$ since

$$
n=1^{2}+\cdots+1^{2} .
$$

It is known that $\operatorname{NSQ}(n) \leq 4$.
In this problem you will write and run two programs that will, given $n \in \mathrm{~N}$, find a bound on $\mathrm{NSQ}(n)$.
(a) Write a program that will, given n, does the following:

- Find the largest n_{1} such that $n_{1}^{2} \leq n$. If $n-n_{1}^{2}=0$ then you are done: $n=n_{1}^{2}$ so output 1. If not then goto the next step.
- Find the largest n_{2} such that $n_{2}^{2} \leq n-n_{1}^{2}$. If $n-n_{1}^{2}=0$ then you are done: $n=n_{1}^{2}+n_{2}^{2}$ so output 2 . If not then \ldots
- Keep going like this until there is an output.
(b) Write a program that will, given n, find, for all $1 \leq i \leq n$, a number $A[i]$ such that i can be written as the sum of $A[i]$ squares.
- $A[0] \leftarrow 0$ (0 can be written as the sum of 0 squares).
- $A[1] \leftarrow 1$ (1 can be written as the sum of 1 square).
- For $i \leftarrow 2$ to n

$$
A[i] \leftarrow 1+\min \left\{A\left[i-j^{2}\right]: i-j^{2} \geq 0\right\}
$$

GOTO NEXT PAGE

4. (5 points) Run the first program on $n=1,2, \ldots, 1000$. List out all of the n where the answer was ≥ 5.
5. (0 points) How would you fill in the following sentence The first program on input n outputs a number ≥ 5 iff BLANK.
6. (5 points) Run the second program on $n=1000$ (so we now know the answers for $1, \ldots, 1000$). List all of the n where $A[n]$ differs from the first program on n.
7. (0 points) How would you fill in the following sentence The first and second differ on n iff BLANK.
8. (5 points) List all of the n such that $A[n]=4$.
9. (0 points) How would you fill in the following sentence $A[n]=4$ iff BLANK
10. (Extra Credit) PROVE the following:

There exists and infinite number of $x \in \mathbf{N}$ such that x cannot be written as the sum of ≤ 3 squares-of-naturals.

