Homework 5 MORALLY Due Mar 14 at 9:00AM WARNING: THIS HW IS FIVE PAGES LONG!!!!!!!!!!!!!!!!!

1. (0 points but please DO IT) What is your name?
2. (20 points- AND if you got the Dup-Spoiler Question wrong on the untimed midterm, but get THIS question right, you will get FULL CREDIT on the that question)

For this problem you may ASSUME the following

- For all n, for all $a \geq 2^{n}$, DUP wins ($\mathrm{N}+\mathrm{N}^{*}, L_{a} ; n$).
- For all n, for all $a \geq 2^{n}$, DUP wins $\left(\mathrm{N}+\mathrm{Z}+\mathrm{N}^{*}, L_{a} ; n\right)$.
- For all n, for all $a \geq 2^{n}$, DUP wins ($\mathrm{N}+\mathrm{Z}+\mathrm{Z}+\mathrm{N}^{*}, L_{a} ; n$).
- For all n, DUP wins ($\mathrm{N}, \mathrm{N}+\mathrm{Z} ; n$).

And NOW the question. Prove the following rigorously, similar to the end of the slides on DUP SPOILER games.
(a) For all n, DUP wins the ($\mathrm{N}, \mathrm{N}+\mathrm{Z}+\mathrm{Z} ; n$) game.
(b) For all n, DUP wins the ($\mathrm{N}, \mathrm{N}+\mathrm{Z}+\mathrm{Z}+\mathrm{Z} ; n$) game. (You can use Part a)
3. (40 points) Let a_{n} be defined by
$a_{1}=10$
$a_{2}=20$
$a_{3}=30$
$(\forall n \geq 4)\left[a_{n}=a_{n-1}+2 a_{n-2}+3 a_{n-3}\right]$.
Using constructive induction find NATURAL NUMBERS A, B such that
$(\forall n \geq 1)\left[a_{n} \leq A B^{n}\right]$.
4. (40 points) In this problem $\frac{n}{2}$ means $\left\lfloor\frac{n}{2}\right\rfloor$. In this problem we will be looking at the recurrence
$a_{1}=1$
$(\forall n \geq 2)\left[a_{n}=a_{n-1}+a_{n / 2}\right]$.
(a) (0 points but you will need it for the later parts) Write a program that does the following:
On input d, N determine
For how many $1 \leq n \leq N$ is $a_{n} \equiv 0(\bmod d)$.
For how many $1 \leq n \leq N$ is $a_{n} \equiv 1(\bmod d)$.
For how many $1 \leq n \leq N$ is $a_{n} \equiv 2(\bmod d)$.

For how many $1 \leq n \leq N$ is $a_{n} \equiv d-1 \quad(\bmod d)$.
(Advice: Compute $a_{n}(\bmod d)$ instead of a_{n} to avoid large numbers.)
(b) (20 points) Run your program for $N=1000$ and $d=2,3, \ldots, 20$. Present your data as follows (the numbers below are made up) $d=2$

c	$\mid\{n: n \equiv c$
0	$(\bmod 2)\} \mid$
1	410

$d=3$

c	$\|\{n: n \equiv c \quad(\bmod 3)\}\|$
0	333
1	333
2	334

$$
\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots
$$

$$
d=20
$$

c	$\|\{n: n \equiv c \quad(\bmod 20)\}\|$
0	100
1	0
2	100
3	0
4	25
5	25
6	25
7	25
8	100
9	0
10	100
11	0
12	25
13	25
14	25
15	25
16	100
17	100
18	200
19	0

GO TO NEXT PAGE

(c) (20 points) Based on your data make a conjecture of the form:

Let c, d be such that $0 \leq c \leq d-1$ and $d \geq 2$. There exists an infinite number of n such that $a_{n} \equiv c(\bmod d) \operatorname{IFF} X X X(c, d)$.

