

- 1. (0 points but please DO IT) What is your name?
- 2. (20 points- AND if you got the Dup-Spoiler Question wrong on the untimed midterm, but get THIS question right, you will get FULL CREDIT on the that question)

For this problem you may ASSUME the following

- For all n, for all $a \ge 2^n$, DUP wins $(\mathsf{N} + \mathsf{N}^*, L_a; n)$.
- For all n, for all $a \ge 2^n$, DUP wins $(\mathsf{N} + \mathsf{Z} + \mathsf{N}^*, L_a; n)$.
- For all n, for all $a \ge 2^n$, DUP wins $(N + Z + Z + N^*, L_a; n)$.
- For all n, DUP wins (N, N + Z; n).
- •

And NOW the question. Prove the following rigorously, similar to the end of the slides on DUP SPOILER games.

- (a) For all n, DUP wins the (N, N + Z + Z; n) game.
- (b) For all n, DUP wins the (N, N + Z + Z + Z; n) game. (You can use Part a)

3. (40 points) Let a_n be defined by

$$a_{1} = 10$$

$$a_{2} = 20$$

$$a_{3} = 30$$

$$(\forall n \ge 4)[a_{n} = a_{n-1} + 2a_{n-2} + 3a_{n-3}].$$

Using constructive induction find NATURAL NUMBERS $\boldsymbol{A},\boldsymbol{B}$ such that

$$(\forall n \ge 1)[a_n \le AB^n].$$

4. (40 points) In this problem $\frac{n}{2}$ means $\lfloor \frac{n}{2} \rfloor$. In this problem we will be looking at the recurrence

 $a_1 = 1$

 $(\forall n \ge 2)[a_n = a_{n-1} + a_{n/2}].$

(a) (0 points but you will need it for the later parts) Write a program that does the following:

On input d, N determine For how many $1 \le n \le N$ is $a_n \equiv 0 \pmod{d}$. For how many $1 \le n \le N$ is $a_n \equiv 1 \pmod{d}$. For how many $1 \le n \le N$ is $a_n \equiv 2 \pmod{d}$. : For how many $1 \le n \le N$ is $a_n \equiv d-1 \pmod{d}$. (Advice: Compute $a_n \pmod{d}$ instead of a_n to avoid large numbers.)

(b) (20 points) Run your program for N = 1000 and d = 2, 3, ..., 20. Present your data as follows (the numbers below are made up) d = 2

С	$ \{n:n\equiv c\pmod{2}\} $
0	410
1	590

d=3

c	$ \{n:n\equiv c\pmod{3}$)}
0	333	
1	333	
2	334	

:

$$d = 20$$

С	$ \{n:n\equiv c \pmod{20}\} $
0	100
1	0
2	100
3	0
4	25
5	25
6	25
7	25
8	100
9	0
10	100
11	0
12	25
13	25
14	25
15	25
16	100
17	100
18	200
19	0

(c) (20 points) Based on your data make a conjecture of the form: Let c, d be such that $0 \le c \le d-1$ and $d \ge 2$. There exists an infinite number of n such that $a_n \equiv c \pmod{d}$ IFF XXX(c, d).