Homework 10 MORALLY Due Apr 25 at 9:00AM WARNING: THIS HW IS FOUR PAGES LONG!!!!!!!!!!!!!!!!!

1. (0 points but please DO IT) What is your name?
2. (30 points) Fill in $X X X(n)$ and PROVE the following USING the technique of partitioning the square by superimposing a $n \times n$ grid on it (so into n^{2} squares).
For every set of $n^{2}+1$ points in the unit square there exists two points that are $\leq X X X(n)$ apart.
3. (35 points) Fill in $Y Y Y(n)$ and PROVE the following USING the technique of partitioning the square by superimposing a 4×4 grid on it, and getting lots of points in that region, and then superimposing a 4×4 grid on that region, etc.
For every set of $2^{n}+1$ points in the unit square there exists two points that are $\leq Y Y Y(n)$ apart (you can assume n is odd or even as you see fit).
4. (30 points) Fill in $Z Z Z$ and PROVE the following.

For any 3-coloring of the $4 \times Z Z Z$ grid there is a monochromatic rectangle.
5. (Extra Credit) We know from class that
if there are 5 points in the unit square then there are 2 that are $\leq \frac{\sqrt{2}}{2}$ apart.
Let $d_{5}=\frac{\sqrt{2}}{2}$ apart.

- Find a number $d_{6}<d_{5}$ such that
if there are 6 points in the unit square then there are 2 that are $\leq d_{6}$ apart.
- Find a number $d_{7}<d_{6}$ such that
if there are 7 points in the unit square then there are 2 that are $\leq d_{7}$ apart.
- Find a number $d_{8}<d_{7}$ such that
if there are 8 points in the unit square then there are 2 that are $\leq d_{8}$ apart.

