Midterm One, March 9 8:00PM-10:00PM WARNING: THIS MID IS THREE PAGES LONG!!!!!!!!!!!!!!!!!

1. (15 points) Let p and q be primes. Let $n=p^{2} q^{3}$. Show that, $n^{2 / 5} \notin \mathbf{Q}$. USE Unique Factorization.
2. (20 points)
(a) (7 points- 1 point each) Fill in the following:
0) $0^{4} \equiv$
$(\bmod 8)$.
1) $1^{4} \equiv \quad(\bmod 8)$.
2) $2^{4} \equiv \quad(\bmod 8)$.
3) $3^{4} \equiv \quad(\bmod 8)$.
4) $4^{4} \equiv \quad(\bmod 8)$.
5) $5^{4} \equiv \quad(\bmod 8)$.
6) $6^{4} \equiv \quad(\bmod 8)$.
7) $7^{4} \equiv \quad(\bmod 8)$.
(b) (13 points) Show that there exists an infinite number of n such that n cannot be written as the sum of 6 fourth powers. (HINT: Use Part a.)

GO TO NEXT PAGE

3. (15 points) Find a number M such that the following is true, and prove it.

$$
(\forall n \geq M)(\exists x, y \in \mathbf{N})[n=37 x+38 y] .
$$

