Untimed Midterm. Morally Due April 11

WARNING: THIS MIDTERM IS FOUR PAGES LONG!!!!!!!!!!!!!!!!!

1. (16 points)
(a) (0 points) In this problem C is the complex numbers.

Write a program that does the following: Given A, B consider the recurrence:
$a_{0}=1$
$a_{1}=2$
$(\forall n \geq 2)\left[a_{n}=A a_{n-1}+B a_{n-2}\right]$.
FIND $\alpha_{1}, \alpha_{2} \in \mathbf{C}$ (use an approximation to 5 places) such that there exists C, D and

$$
a_{n}=C \alpha_{1}^{n}+D \alpha_{2}^{n}
$$

(You can find C, D if you want to but they are not required for this problem.)
(b) (0 points but you will need this) Write a program that will, given M, run the program in part a for all $1 \leq A \leq M$ and $-M \leq B \leq$ M and generates a table of the following form:
$M=2$:

A	B	α_{1}	α_{2}	$\max \left\{\alpha_{1}, \alpha_{2}\right\}$
1	-2	$1.2+i$	$2.3-i$	$2.3-i$
1	-1	2.2	4.3	4.3
1	0	8.2	1.3	8.2
1	1	9.2	11.3	11.3
1	2	19.2	111.3	111.3
2	-2	1.2	2.3	2.3
2	-1	2.2	4.3	4.3
2	0	8.2	1.3	8.2
2	1	9.2	11.3	11.3
2	2	19.2	111.3	111.3

(for complex number $a+b i$ the size is $a^{2}+b^{2}$. We use this for defining the max.)

GOTO NEXT PAGE FOR MORE ON THIS PROBLEM
(c) (0 points) Email Emily your code.
(d) (5 points) IF you ran the code on M, how many rows will the program generate? Show your work in deducing the number.
(e) (11 points) Run the code on $M=3$ and submit the table.
(f) (Extra Credit) Say something intelligent about how A affects MAX ALPHA and how B affects MAX ALPHA. Which has a bigger effect?

GO TO NEXT PAGE

2. (16 points) Emily might teach 250 H in Spring 2023 (Bill is going on sabbatical). She will need help designing problems! In this problem you will help her!
She wants to ask a question of the following form (With A, B, C replaced by positive natural numbers).
HERE IS THE PROBLEM SHE WANTS TO ASK:
Let a_{n} be defined as follows.
$a_{1}=5$
$(\forall n \geq 2)\left[a_{n}=B a_{n-1}^{2}+C a_{\left\lfloor n^{1 / 3}\right\rfloor}\right]$
Show by strong induction that
$(\forall n \geq 1)\left[a_{n} \equiv 5 \quad(\bmod 12)\right]$
Include Base Case, IH, and IS.
Now for YOUR PROBLEM: Use constructive induction to find 9 pairs (B, C) such that

$$
(\forall n \geq 1)\left[a_{n} \equiv 5 \quad(\bmod 12)\right]
$$

You will need to have a Base Case, IH, and IS.

GOTO NEXT PAGE

3. (18 points- 6 points each) In this problem all of the x_{i} are natural numbers. And remember that 0 is a natural number.
(a) How many elements are in the following set:

$$
\left\{\left(x_{1}, \ldots, x_{n}\right):\left(x_{i} \geq 0\right) \wedge\left(x_{1}+\cdots+x_{10}=100\right)\right\} .
$$

(b) How many elements are in the following set:

$$
\left\{\left(x_{1}, \ldots, x_{n}\right):\left(x_{i} \geq 1\right) \wedge\left(x_{1}+\cdots+x_{10}=100\right)\right\}
$$

(c) How many elements are in the following set:

$$
\left\{\left(x_{1}, \ldots, x_{n}\right):\left(x_{i} \geq 2\right) \wedge\left(x_{1}+\cdots+x_{10}=100\right)\right\}
$$

(d) (Extra Credit) How many elements are in the following set:

$$
\left\{\left(x_{1}, \ldots, x_{n}\right):\left(x_{i} \geq i\right) \wedge\left(x_{1}+\cdots+x_{10}=100\right)\right\}
$$

