Midterm One, March 9 8:00PM-10:00PM WARNING: THIS MID IS SIX PAGES LONG!!!!!!!!!!!!!!!!!

1. (a) Let p and q be distinct primes. Let $n=p^{2} q^{3}$. Show that, $n^{2 / 5} \notin \mathbf{Q}$. USE Unique Factorization.

SOLUTION

1) Assume, BWOC, that $n^{2 / 5}=\frac{a}{b}$. So

$$
\begin{gathered}
n^{2}=\frac{a^{5}}{b^{5}} \\
n^{2} b^{5}=a^{5} \\
p^{2} q^{3} b^{5}=a^{5}
\end{gathered}
$$

Let p_{1}, \ldots, p_{L} be all of the primes that divide either a or b. (We do not know or care if p or q is one of the p_{i} 's.) Then by Unique Factorization there is a unique a_{1}, \ldots, a_{L} and b_{1}, \ldots, b_{L} such that

$$
\begin{aligned}
& a=p_{1}^{a_{1}} \cdots p_{L}^{a_{L}} \\
& b=p_{1}^{b_{1}} \cdots p_{L}^{b_{L}}
\end{aligned}
$$

So

$$
p^{2} q^{3} p_{1}^{5 b_{1}} \cdots p_{L}^{5 b_{L}}=p_{1}^{5 a_{1}} \cdots p_{L}^{5 a_{L}}
$$

Let LHSp be the number of times p appears on the LHS. Clearly $L H S p \equiv 2(\bmod 5)$.
Let RHSp be the number of times p appears on the RHS. Clearly $L H S p \equiv 0 \quad(\bmod 5)$.
Since $L H S p=R H S p$, this is a contradiction.
END OF SOLUTION
GO TO NEXT PAGE
2. (a) Fill in the following:
0) $0^{4} \equiv \quad(\bmod 8)$.

1) $1^{4} \equiv \quad(\bmod 8)$.
2) $2^{4} \equiv \quad(\bmod 8)$.
3) $3^{4} \equiv \quad(\bmod 8)$.
4) $4^{4} \equiv \quad(\bmod 8)$.
5) $5^{4} \equiv \quad(\bmod 8)$.
6) $6^{4} \equiv \quad(\bmod 8)$.
7) $7^{4} \equiv \quad(\bmod 8)$.
(b) Show that there exists an infinite number of n such that n cannot be written as the sum of 6 fourth powers. (HINT: Use Part a.)

SOLUTION

1)
2) $0^{4} \equiv 0 \quad(\bmod 8)$.
3) $1^{4} \equiv 1 \quad(\bmod 8)$.
4) $2^{4} \equiv 0 \quad(\bmod 8)$.
5) $3^{4} \equiv 1 \quad(\bmod 8)$.
6) $4^{4} \equiv 0 \quad(\bmod 8)$.
7) $5^{4} \equiv 1 \quad(\bmod 8)$.
8) $6^{4} \equiv 0 \quad(\bmod 8)$.
9) $7^{4} \equiv 1 \quad(\bmod 8)$.
10) We claim that all numbers $n \equiv 7(\bmod 8)$ cannot be written as the sum of 6 fourth powers.
Assume

$$
8 n+7=x_{1}^{4}+\cdots+x_{6}^{4}
$$

Take both sides mod 8

$$
7 \equiv x_{1}^{4}+\cdots+x_{6}^{4} \quad(\bmod 8)
$$

Each $x_{i}^{4}(\bmod 8)$ is either 0 or 1 . Hence the sum of 6 of them cannot add up to 7 .
END OF SOLUTION
GO TO NEXT PAGE
3. (X points) Find a number M such that the following is true, and prove it.

$$
(\forall n \geq M)(\exists x, y \in \mathbf{N})[n=37 x+38 y] .
$$

SOLUTION

Looking ahead we will have two cases: one where $x \geq 1$ so we can swap out a 37 -cent, and the other where we swap out SOME number of 38 's for SOME number of 37 's to get a net gain of 1 . So we need to find a, b such that
$37 a-38 b=1$.
Using Wolfram Alpha we find that $a=37, b=36$ works.
Hence in Case 2 we will need $y \geq 36$, so $n \geq 36 \times 38=1368$.
So we will take $M=1368$.
Base Case: $1368=36 \times 38$.
$I H: n \geq 1368$. There exists x, y such that $n-1=37 x+38 y$.
IS: Assume there exists $x, y \in \mathrm{~N}$ such that $n=37 x+38 y$.
Case 1: $x \geq 1$. Then swap out 137 -cent coin and swap in one 38 -cent coin to get
$37(x-1)+38(y+1)=37 x-37+38 y+38=37 x+38 y+1=n+1$.

Case 2: $y \geq 36$. Then swap out 3638 -cent coins (thats 1368) and swap in 3737 -cent (thats 1369) to get
$37(x+37)+38(y-36)=37 x+1369+38 y-1368=37 x+38 y+1=n+1$.

Case 3: $x \leq 0$ and $y \leq 35$. Then $n \leq 37 \times 0+38 \times 35=1330$. But $n \geq 1368$. So this case cannot occur.

END OF SOLUTION

