Bayes Theorem

Bayes's theorem

$$\triangleright \Pr[A|B] = \Pr[B|A] \cdot \frac{\Pr[A]}{\Pr[B]}$$

Note: This is very useful in both this course and in life.

 $\Pr[A|B] = \Pr[B|A] \cdot \frac{\Pr[A]}{\Pr[B]}$. There are two coins:

- 1) Coin F is fair: $Pr(H) = Pr(T) = \frac{1}{2}$. 2) Coin B is biased: $Pr(H) = \frac{3}{4}$, $Pr(T) = \frac{1}{4}$.

Alice picks coin at random, flips 10 times, gets T^5H^5 . Is the coin definitely fair?

 $\Pr[A|B] = \Pr[B|A] \cdot \frac{\Pr[A]}{\Pr[B]}$. There are two coins:

- 1) Coin F is fair: $Pr(H) = Pr(T) = \frac{1}{2}$. 2) Coin B is biased: $Pr(H) = \frac{3}{4}$, $Pr(T) = \frac{1}{4}$.

Alice picks coin at random, flips 10 times, gets T^5H^5 . Is the coin definitely fair? No.

$$\Pr[A|B] = \Pr[B|A] \cdot \frac{\Pr[A]}{\Pr[B]}$$
. There are two coins:

- 1) Coin F is fair: $Pr(H) = Pr(T) = \frac{1}{2}$.
- 2) Coin B is biased: $Pr(H) = \frac{3}{4}$, $Pr(T) = \frac{1}{4}$.

Alice picks coin at random, flips 10 times, gets T^5H^5 . Is the coin definitely fair? No.

What is Prob that it is fair? VOTE:

- 1. Between 0.99 and 1.0
- 2. Between 0.98 and 0.99
- 3. Between 0.97 and 0.98
- 4. Less than 0.97

$$\Pr[A|B] = \Pr[B|A] \cdot \frac{\Pr[A]}{\Pr[B]}$$
. There are two coins:

- 1) Coin F is fair: $Pr(H) = Pr(T) = \frac{1}{2}$.
- 2) Coin B is biased: $Pr(H) = \frac{3}{4}$, $Pr(T) = \frac{1}{4}$.

Alice picks coin at random, flips 10 times, gets T^5H^5 . Is the coin definitely fair? No.

What is Prob that it is fair? VOTE:

- 1. Between 0.99 and 1.0
- 2. Between 0.98 and 0.99
- 3. Between 0.97 and 0.98
- 4. Less than 0.97

We will see that it is \sim 0.971.

$$\Pr(F|T^{5}H^{5}) = \frac{\Pr(F)\Pr(T^{5}H^{5}|F)}{P(T^{5}H^{5})}$$

$$\Pr(F) = \frac{1}{2}$$

$$\Pr(F|T^5H^5) = \frac{\Pr(F)\Pr(T^5H^5|F)}{P(T^5H^5)}$$

$$\Pr(F) = \frac{1}{2}$$

 $\Pr(T^5 H^5 | F) = (\frac{1}{2})^{10}$

$$\Pr(F|T^5H^5) = \frac{\Pr(F)\Pr(T^5H^5|F)}{P(T^5H^5)}$$

$$Pr(F) = \frac{1}{2} Pr(T^{5}H^{5}|F) = (\frac{1}{2})^{10} Pr(T^{5}H^{5}) = Pr(T^{5}H^{5} \cap F) + Pr(T^{5}H^{5} \cap B)$$

$$\Pr(F|T^5H^5) = \frac{\Pr(F)\Pr(T^5H^5|F)}{P(T^5H^5)}$$

$$\begin{aligned} &\Pr(F) = \frac{1}{2} \\ &\Pr(T^5 H^5 | F) = (\frac{1}{2})^{10} \\ &\Pr(T^5 H^5) = \Pr(T^5 H^5 \cap F) + \Pr(T^5 H^5 \cap B) \\ &= \Pr(T^5 F^5 | F) \Pr(F) + \Pr(T^5 H^5 | B) \Pr(B) = \frac{1}{2} \left((\frac{1}{2})^{10} + (\frac{1}{4} \frac{3}{4})^5 \right) \end{aligned}$$

$$\Pr(F|T^5H^5) = \frac{\Pr(F)\Pr(T^5H^5|F)}{P(T^5H^5)}$$

$$Pr(F) = \frac{1}{2}$$

$$Pr(T^{5}H^{5}|F) = (\frac{1}{2})^{10}$$

$$Pr(T^{5}H^{5}) = Pr(T^{5}H^{5} \cap F) + Pr(T^{5}H^{5} \cap B)$$

$$= Pr(T^{5}F^{5}|F)Pr(F) + Pr(T^{5}H^{5}|B)Pr(B) = \frac{1}{2}\left((\frac{1}{2})^{10} + (\frac{1}{4}\frac{3}{4})^{5}\right)$$

So the answer is:

$$\frac{(1/2)^{10}}{(1/2)^{10} + (3/16)^5} = \frac{1}{1 + 2^{10}(3/16)^5} = \frac{1}{1 + 2^2(3/8)^5} \sim 0.97.$$