Honors HW04. Morally DUE Mon Mar 14

A linear ordering L has the Levin property if the following hold:

- There exists a MIN element.
 Formally
 $$(\exists x)(\forall y)[x \leq y].$$
 In later problems we will call this $x MIN$.

- There exists a MAX element.
 Formally
 $$(\exists y)(\forall x)[x \leq y].$$
 In later problems we will call this $x MAX$.

- For all $y \neq MIN$ there is an element x such that $x < y$ and there is nothing inbetween x and y.
 Formally
 $$(\forall y \neq MIN)(\exists x)[x < y \land (\forall z)[(z \leq x) \lor (z \geq y)]].$$

- For all $x \neq MAX$ there is an element y such that $x < y$ and there is nothing inbetween x and y.
 Formally
 $$(\forall x \neq MAX)(\exists y)[x < y \land (\forall z)[(z \leq x) \lor (z \geq y)]].$$

1. (50 points) Give an example of an ordering L with the Levin Property such that E wins the Emptier-Filler game with ordering L.

2. (50 points) Give an example of an ordering L with the Levin Property such that F wins the Emptier-Filler game with ordering L.