Homework 9 MORALLY Due Apr 18 at 9:00AM WARNING: THIS HW IS FIVE PAGES LONG!!!!!!!!!!!!!!

- 1. (0 points but please DO IT) What is your name?
- 2. (30 points) Bill has the following:
 - A fair 6-sided die. So the $Pr(1) = \cdots = Pr(6) = \frac{1}{6}$.
 - A bias die with

$$\Pr(1) = \Pr(2) = \Pr(3) = \frac{1}{4}$$

$$Pr(1) = Pr(2) = Pr(3) = \frac{1}{4}$$

 $Pr(4) = Pr(5) = Pr(6) = \frac{1}{12}$

Emily picks one of these die at random (each with prob $\frac{1}{2}$).

- (a) (15 points) If she rolls it n times and gets n 1's, what is the prob she picked the biased die?
- (b) (15 points) If she rolls it n times and gets n 6's what is the prob she picked the biased die?

SOLUTION

Let F be picked Fair Die.

Let B be picked Bias Die.

Let A be the event that Emily rolled the die n times and got all 1's.

$$\Pr(B \mid A) = \Pr(A \mid B) \frac{\Pr(B)}{\Pr(A)}$$

We now compute these probabilities separately.

$$\Pr(A \mid B) = \frac{1}{4^n}$$

$$\Pr(B) = \frac{1}{2}$$
.

$$Pr(A) = Pr(A \mid B))Pr(B) + Pr(A \mid F)Pr(F)$$

$$= \frac{1}{4^n} \times \frac{1}{2} + \frac{1}{6^n} \times \frac{1}{2}$$

Hence

Lets put it all together

$$\Pr(B \mid A) = \frac{1}{4^n} \frac{1/2}{(1/2)(1/4^n + 1/6^n)} = \frac{1}{4^n} \frac{1}{(1/4^n + 1/6^n)} = \frac{1}{1 + (2/3)^n}$$

END OF SOLUTION

- 3. (25 points) Emily tosses m balls into n boxes at random. Assume $m \ll n$.
 - (a) (15 points) What is the probability that at least FOUR balls are in the same box. (You may use the approximations we used for the problem of THREE balls.)

SOLUTION

Prob that i, j, k, l in the same box is $\frac{n}{n^4} = \frac{1}{n^3}$.

Prob that i, j, k, l NOT in the same box is $1 - \frac{1}{n^3} \sim e^{-1/n^3}$.

Prob that no 4-set is in the same box is approx

$$(e^{-1/m^3})^{\binom{m}{4}} \sim e^{-m^4/24n^3}$$

Prob that SOME 4-set is in the same box is approx

$$1 - e^{-m^4/24n^3}$$

END OF SOLUTION

(b) (10 points) Let n be fixed and large. Fill in the following statement:

If m = XXX then the prob of having 4 people in a room is OVER $\frac{1}{2}$ and m is close to the least such value of m. (HINT: Use Part 1 of this problem.)

SOLUTION

$$1 - e^{-m^4/24n^3} > \frac{1}{2}$$

$$\frac{1}{2} > e^{-m^4/24n^3}$$

$$-\ln(2) > -\frac{m^4}{24n^3}$$

$$\ln(2) < \frac{m^4}{24n^3}$$

$$24\ln(2)n^3 < m^4$$

$$m > (24\ln(2))^{1/3}n^{3/4}$$

END OF SOLUTION

GO TO NEXT PAGE

4. (25 points) Do a COMBINATORIAL PROOF (NOT algebraic, NOT by induction) for the following statement:

For all
$$n \ge 0$$
, $\sum_{s=0}^{n} {n \choose s} 2^s = 3^n$.

(HINT: The Right Hand Side is the answer to the question:

How many ways can you 3-color $\{1, \ldots, n\}$.

Argue that the Left Hand Side solves this same problem.)

5. (25 points) We are playing with a normal Earth-poker: 13 ranks, 4 suites, hands of size 5.

What is the probability that a hand has a flush OR a straight but NOT a straight-flush. Give it both in terms of notation like $\binom{52}{5}$ and an actual number like 0.0414 (to 4 places).