Homework X

Morally due Mon XX, 9:00AM

1. (X points) In this problem $\frac{n}{2}$ means $\lfloor \frac{n}{2} \rfloor$. In this problem we will be looking at the recurrence

 $a_1 = 1$

 $(\forall n \ge 2)[a_n = a_{n-1} + a_{n/2}].$

(a) (0 points but you will need it for the later parts) Write a program that does the following:

On input d, N determine

For how many $1 \le n \le N$ is $a_n \equiv 0 \pmod{d}$.

For how many $1 \le n \le N$ is $a_n \equiv 1 \pmod{d}$.

For how many $1 \le n \le N$ is $a_n \equiv 2 \pmod{d}$.

:

For how many $1 \le n \le N$ is $a_n \equiv N - 1 \pmod{d}$.

(Advice: Compute $a_n \pmod{N}$ instead of a_n to avoid large numbers.)

(b) (10 points) Run your program for N=1000 and $d=2,3,\ldots,20$. Present your data as follows (the numbers below are made up)

d = 2

c	$ \{n \colon n \equiv c \pmod{2}\} $
0	410
1	590

d = 3

c	$ \{n \colon n \equiv c \pmod{3}\} $
0	333
1	333
2	334

d = 4

c	$ \{n \colon n \equiv c \pmod{4}\} $
0	100
1	200
2	300
3	400

:

d = 20

c	$ \{n \colon n \equiv c \pmod{20}\} $
0	100
1	0
2	100
3	0
4	25
5	25
6	25
7	25
8	100
9	0
10	100
11	0
12	25
13	25
14	25
15	25
16	100
17	100
18	200
19	0

- (c) (X points) Based on your data make a conjecture of the form: Let c,d be such that $0 \le c \le d-1$ and $d \ge 2$. There exists an infinite number of n such that $a_n \equiv c \pmod{d}$ IFF XXX(c,d).
- (d) (X points) Based on your data make a conjecture of the form: Let c,d be such that $0 \le c \le d-1$ and $d \ge 2$. For large N the set

$${n: a_n \equiv c \pmod{d}} \cap {1, \dots, N}$$

is ROUGHLY size $\frac{N}{c}$ iff YYY(c,d).