Homework 2 Programming Part

Morally due Mon Feb 14, 9:00AM

1. (55 points) Let $n \in \mathbb{N}$. NSQ(n) is the least number such that n can be written as the sum of NSQ(n) squares. Clearly $NSQ(n) \leq n$ since

$$n = 1^2 + \dots + 1^2.$$

It is known that $NSQ(n) \leq 4$.

In this problem you will write and run two programs that will, given $n \in \mathbb{N}$, find a bound on NSQ(n).

- (a) Write a program that will, given n, does the following:
 - Find the largest n_1 such that $n_1^2 \le n$. If $n n_1^2 = 0$ then you are done: $n = n_1^2$ so output 1. If not then goto the next step.
 - Find the largest n_2 such that $n_2^2 \le n n_1^2$. If $n n_1^2 = 0$ then you are done: $n = n_1^2 + n_2^2$ so output 2. If not then . . .
 - Keep going like this until there is an output.
- (b) Write a program that will, given n, find, for all $1 \le i \le n$, a number A[i] such that i can be written as the sum of A[i] squares.
 - $A[0] \leftarrow 0$ (0 can be written as the sum of 0 squares).
 - $A[1] \leftarrow 1$ (1 can be written as the sum of 1 square).
 - For $i \leftarrow 2$ to n

$$A[i] \leftarrow 1 + \min\{A[i-j^2] : i-j^2 > 0\}$$

- 2. (15 points) Run the first program on n = 1, 2, ..., 1000. List out all of the n where the answer was ≥ 5 .
- 3. (0 points) How would you fill in the following sentence The first program on input n outputs a number ≥ 5 iff BLANK.
- 4. (15 points) Run the second program on n = 1000 (so we now know the answers for $1, \ldots, 1000$). List all of the n where A[n] differs from the first program on n.
- 5. (0 points) How would you fill in the following sentence

 The first and second differ on n iff BLANK.
- 6. (15 points) List all of the n such that A[n] = 4.
- 7. (0 points) How would you fill in the following sentence A[n] = 4 iff BLANK
- 8. (Extra Credit) PROVE the following: There exists and infinite number of $x \in \mathbb{N}$ such that x cannot be written as the sum of ≤ 3 squares-of-naturals.