1. (15 points) Let p and q be primes. Let $n = p^2q^3$. Show that, $n^{2/5} \notin \mathbb{Q}$. Use Unique Factorization.
2. (20 points)

(a) (7 points-1 point each) Fill in the following:
 0) \(0^4 \equiv \) (mod 8).
 1) \(1^4 \equiv \) (mod 8).
 2) \(2^4 \equiv \) (mod 8).
 3) \(3^4 \equiv \) (mod 8).
 4) \(4^4 \equiv \) (mod 8).
 5) \(5^4 \equiv \) (mod 8).
 6) \(6^4 \equiv \) (mod 8).
 7) \(7^4 \equiv \) (mod 8).

(b) (13 points) Show that there exists an infinite number of \(n \) such that \(n \) cannot be written as the sum of 6 fourth powers. (HINT: Use Part a.)
3. (15 points) Find a number M such that the following is true, and prove it.

$$(\forall n \geq M)(\exists x, y \in \mathbb{N})[n = 37x + 38y].$$