1. (15 points)

(a) (5 points) What is the coefficient of $x^2y^3z^4$ in

$$(x + y + z)^9$$

(b) (10 points) What is the coefficient of $x^ay^bz^c$ in

$$(x + y + z)^{a+b+c}$$
2. (20 points–5 points each) The Narns play card games with cards that have ranks in the set \{1, 2, \ldots, r\} and suites in the set \{1, \ldots, s\}. In Narn Poker, each player gets \(h\) cards.

We assume that both \(r\) and \(s\) are squares, so \(\sqrt{r}\) and \(\sqrt{s}\) are natural numbers.

(a) A Square Hand is a hand where all of the cards have square rank. What is the probability of getting a Square Hand? (Its okay if they are of the same suite, or not.)

SOLUTION

The number of hands is \(\binom{rs}{h}\).

The number of cards of square rank is \(\sqrt{r} \times s\). Hence the number of hands where all of the cards have square rank is \(\binom{\sqrt{rs}}{h}\).

Hence the answer is

\[
\frac{\binom{\sqrt{rs}}{h}}{\binom{rs}{h}}.
\]

END OF SOLUTION

(b) A Square Flush is a hand where all of the cards have a square rank. and all of the suites are the same. What is the probability of getting a Square Flush?

SOLUTION

Note that in a square flush you can’t have any rank twice. So first pick the \(h\) squares: \(\binom{\sqrt{r}}{h}\). Then pick the suite: \(s\).

so the answer is

\[
\frac{\binom{\sqrt{r}}{h} \cdot s}{\binom{rs}{h}}.
\]

END OF SOLUTION

(c) An Apple is when you get two of the same rank. There are no other restrictions, so for example, if you had 3 of the same rank, that would still be an Apple.

What is the probability of getting an Apple.
SOLUTION
To form a hand that has a pair you pick the rank: \(r \) ways.
Then you pick the suite for those two cards: \(\binom{s}{2} \) ways.
Then you pick the remaining \(h - 2 \) cards out of the remaining \(rs - 2 \) cards.

\[
\frac{r \times \binom{s}{2} \times \binom{rs-2}{h-2}}{\binom{rs}{2}}
\]

END OF SOLUTION
3. (15 points) In this problem we guide you through the birthday paradox with \(m \) balls in \(n \) boxes where we want the prob that at least \(k \) balls go in the same box is \(\geq \frac{1}{2} \). (HINT: Follow the proof for THREE balls in a box and feel free to use the approximations I use there.)

Assume that \(m \) is much less than \(n \). Assume that \(k \) is much less than both \(n, m \).

We put \(m \) balls into \(n \) boxes at random.

(a) Let \(i_1, \ldots, i_k \) be \(k \) balls. What is the prob they are all in the same box?

SOLUTION
\[
\frac{n}{n^k} = \frac{1}{n^{k-1}}.
\]

(b) What is the (approx) probability that NO set of \(k \) is in the same box? (Use three approximations here: (a) that the events are independent, and (b) use \((1 - x) \) is approximately \(e^{-x} \), and (c) \(\binom{m}{k} \sim \frac{m^k}{k!} \).

SOLUTION
\[
(1 - \frac{1}{n^{k-1}}) \binom{m}{k} \sim e^{-m^k/k!n^{k-1}}.
\]

(c) Think of \(n, k \) as being fixed but \(m \) as being varying. Approximately how large does \(m \) have to be so that the prob that \(k \) are in the same box is \(\geq \frac{1}{2} \)?

SOLUTION
\[
1 - e^{-m^k/k!n^{k-1}} > \frac{1}{2}
\]
\[
e^{-m^k/k!n^{k-1}} < \frac{1}{2}
\]
\[
-\frac{m^k}{k!n^{k-1}} < \ln(1/2) \sim -0.7
\]
\[
0.7 < \frac{m^k}{k!n^{k-1}}
\]
\[
0.7k!n^{k-1} < m^k
\]
\[m > (0.7k!n^{k-1})^{1/k} \]