The Sequence Mod 4 by Erik Metz Written up by William Gasarch

1 Introduction

Consider the sequence

 $\begin{array}{l} a_1 = 1 \\ (\forall n \geq 2)[a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}] \\ \text{Empirically we noticed that } (\forall n)[a_n \not\equiv 0 \pmod{4}]. \text{ We will prove this.} \\ \text{Henceforth} \equiv \text{means} \equiv \pmod{4}. \\ \text{The first few terms of the sequence mod 4 are} \end{array}$

1, 2, 3, 1, 3, 2, 1, 2, 3, 1, 3, 1

This pattern indicates two things:

- If n is odd then $a_n \equiv 1, 3$.
- If you remove the 2's from the sequence you get

1, 3, 1, 3, 1, 3

Our main theorem proves both of these and then (easily) that the terms of the sequence is never $\equiv 0$.

Theorem 1.1 $All \equiv are \mod 4$.

- 1. $(\forall n \ge 0)[a_{2n+1} \equiv 1, 3].$
- 2. $(\forall n \ge 1)$

(a) If
$$a_n \equiv 1$$
 then either $a_{n-1} \equiv 3$ or $a_{n-1} \equiv 2$ and $a_{n-2} \equiv 3$.
(b) If $a_n \equiv 3$ then either $a_{n-1} \equiv 1$ or $a_{n-1} \equiv 2$ and $a_{n-2} \equiv 1$.

3. $a_n \not\equiv 0$.

Proof: The following equations will be used throughout and are easily verified.

EQ1: $a_{2n-1} = a_{2n-2} + a_{n-1}$ EQ2: $a_{2n} = a_{2n-1} + a_n$ EQ3: $a_{2n+1} = a_{2n} + a_n$ EQ4: $a_{2n+1} = a_{2n-1} + a_n$. 1) We prove this by induction on *n*. Base Case n = 0. $a_1 = 1 \equiv 1$.

IH $a_{2n-1} \equiv 1, 3.$

IS Using EQ4 we have $a_{2n+1} = a_{2n-1} + 2a_n$. Since $a_{2n-1} \equiv 1, 3, a_{2n+1} \equiv 1, 3$.

2) We prove this by induction on n. We will assume the theorem for all $m \leq 2n - 1$ and prove it for 2n and 2n + 1. Base Case We emit this for new

Base Case We omit this for now.

IH $(\forall m \leq 2n-1)$ the theorem holds.

IS We first look at a_{2n} .

2a) By Part 1, $a_{2n-1} \neq 0$, hence $a_{2n-1} \equiv 1, 3$. We will do the $a_{2n-1} \equiv 1$ case and leave the $a_{2n-1} \equiv 3$ case to the reader. We have cases based on a_n . By the IH $a_n \equiv 1, 2, 3$.

Case 1 $a_n \equiv 1$.

EQ2: $a_{2n} = a_{2n-1} + a_n \equiv 1 + 1 \equiv 2.$

EQ3: $a_{2n+1} = a_{2n} + a_n \equiv 2 + 1 \equiv 3.$

Case 2 $a_n \equiv 2$.

EQ2: $a_{2n} = a_{2n-1} + a_n \equiv 1 + 2 \equiv 3.$

EQ3:
$$a_{2n+1} = a_{2n} + a_n \equiv 3 + 2 \equiv 1$$
.

Case 3 $a_n \equiv 3$. We show this case cannot occur. Since $a_n \equiv 3$, by the IH, either (1) $a_{n-1} \equiv 1$ or (2) $a_{n-1} \equiv 2$ and $a_{n-2} \equiv 1$.

Case 3.1 $a_{n-1} \equiv 1$.

EQ1:
$$a_{2n-1} = a_{2n-2} + a_n$$

 $1 \equiv a_{2n-2} + 1$
 $a_{2n-2} \equiv 0$ which contradicts the IH.

Case 3.2 $a_{n-1} \equiv 2$ and $a_{n-2} \equiv 1$. We recap and extend what we know We are assuming $a_{2n-1} \equiv 1$. From EQ1 $a_{2n-1} = a_{2n-2} + a_{n-1}$. Putting in $a_{2n-1} \equiv 1$ and $a_{n-1} \equiv 2$ we get $a_{2n-2} \equiv 3$. From the recurrence we have $a_{2n-2} = a_{2n-3} + a_{n-1}$. Putting in $a_{2n-2} \equiv 3$ and $a_{n-1} \equiv 2$ we have $3 \equiv a_{2n-3} + 2$, so $a_{2n-3} \equiv 1$. From the recurrence we have $a_{2n-3} = a_{2n-4} + a_{n-2}$. Putting in $a_{2n-3} \equiv 1$ and $a_{n-2} \equiv 1$ we get $1 = a_{2n-4} + 1$, so $a_{2n-4} \equiv 0$. This contradicts

the IH.

2b) The proof is similar to that of Part 2a.

```
3) We prove this by cases.
If n is odd then, by Part 1, a_n \not\equiv 0.
If n is even then n + 1 is odd. Then by Part 2, a_n \not\equiv 0.
```