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1 Introduction

Consider the sequence
a1 = 1
(∀n ≥ 2)[an = an−1 + abn/2c]
Empirically we noticed that (∀n)[an 6≡ 0 (mod 4)]. We will prove this.
Henceforth ≡ means ≡ (mod 4).
The first few terms of the sequence mod 4 are

1, 2, 3, 1, 3, 2, 1, 2, 3, 1, 3, 1

This pattern indicates two things:

• If n is odd then an ≡ 1, 3.

• If you remove the 2’s from the sequence you get

1, 3, 1, 3, 1, 3

Our main theorem proves both of these and then (easily) that the terms of the sequence
is never ≡ 0.

Theorem 1.1 All ≡ are mod 4.

1. (∀n ≥ 0)[a2n+1 ≡ 1, 3].

2. (∀n ≥ 1)

(a) If an ≡ 1 then either an−1 ≡ 3 or an−1 ≡ 2 and an−2 ≡ 3.

(b) If an ≡ 3 then either an−1 ≡ 1 or an−1 ≡ 2 and an−2 ≡ 1.

3. an 6≡ 0.
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Proof: The following equations will be used throughout and are easily verified.
EQ1: a2n−1 = a2n−2 + an−1
EQ2: a2n = a2n−1 + an
EQ3: a2n+1 = a2n + an
EQ4: a2n+1 = a2n−1 + an.

1) We prove this by induction on n.
Base Case n = 0. a1 = 1 ≡ 1.

IH a2n−1 ≡ 1, 3.

IS Using EQ4 we have a2n+1 = a2n−1 + 2an. Since a2n−1 ≡ 1, 3, a2n+1 ≡ 1, 3.
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2) We prove this by induction on n. We will assume the theorem for all m ≤ 2n − 1 and
prove it for 2n and 2n + 1.
Base Case We omit this for now.

IH (∀m ≤ 2n− 1) the theorem holds.

IS We first look at a2n.

2a) By Part 1, a2n−1 6≡ 0, hence a2n−1 ≡ 1, 3. We will do the a2n−1 ≡ 1 case and leave the
a2n−1 ≡ 3 case to the reader. We have cases based on an. By the IH an ≡ 1, 2, 3.

Case 1 an ≡ 1.

EQ2: a2n = a2n−1 + an ≡ 1 + 1 ≡ 2.

EQ3: a2n+1 = a2n + an ≡ 2 + 1 ≡ 3.

Case 2 an ≡ 2.

EQ2: a2n = a2n−1 + an ≡ 1 + 2 ≡ 3.

EQ3: a2n+1 = a2n + an ≡ 3 + 2 ≡ 1.

Case 3 an ≡ 3. We show this case cannot occur. Since an ≡ 3, by the IH, either (1)
an−1 ≡ 1 or (2) an−1 ≡ 2 and an−2 ≡ 1.

Case 3.1 an−1 ≡ 1.

EQ1: a2n−1 = a2n−2 + an
1 ≡ a2n−2 + 1

a2n−2 ≡ 0 which contradicts the IH.

Case 3.2 an−1 ≡ 2 and an−2 ≡ 1.
We recap and extend what we know
We are assuming a2n−1 ≡ 1.
From EQ1 a2n−1 = a2n−2 + an−1.
Putting in a2n−1 ≡ 1 and an−1 ≡ 2 we get a2n−2 ≡ 3.
From the recurrence we have a2n−2 = a2n−3 + an−1.
Putting in a2n−2 ≡ 3 and an−1 ≡ 2 we have 3 ≡ a2n−3 + 2, so a2n−3 ≡ 1.
From the recurrence we have a2n−3 = a2n−4 + an−2.
Putting in a2n−3 ≡ 1 and an−2 ≡ 1 we get 1 = a2n−4 + 1, so a2n−4 ≡ 0. This contradicts

the IH.
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2b) The proof is similar to that of Part 2a.

3) We prove this by cases.
If n is odd then, by Part 1, an 6≡ 0.
If n is even then n + 1 is odd. Then by Part 2, an 6≡ 0.
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