An Interesting Sum
Examples

\[
\frac{1}{1} + \frac{1}{2} + \frac{1}{1 \times 2} = 2.
\]
Examples

\[
\frac{1}{1} + \frac{1}{2} + \frac{1}{1 \times 2} = 2.
\]

In that last sum I took every product of \(\{1, 2\} \) in the denom.
Examples

\[
\frac{1}{1} + \frac{1}{2} + \frac{1}{1 \times 2} = 2.
\]

In that last sum I took every product of \(\{1, 2\}\) in the denom. Let's try this with \(\{1, 2, 3\}\).
Examples

\[\frac{1}{1} + \frac{1}{2} + \frac{1}{1 \times 2} = 2. \]

In that last sum I took every product of \(\{1, 2\} \) in the denom. Lets try this with \(\{1, 2, 3\} \).

\[\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{1 \times 2} + \frac{1}{1 \times 3} + \frac{1}{2 \times 3} + \frac{1}{1 \times 2 \times 3} = 3. \]
Examples

\[\frac{1}{1} + \frac{1}{2} + \frac{1}{1 \times 2} = 2. \]

In that last sum I took every product of \{1, 2\} in the denom. Let's try this with \{1, 2, 3\}.

\[\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{1 \times 2} + \frac{1}{1 \times 3} + \frac{1}{2 \times 3} + \frac{1}{1 \times 2 \times 3} = 3. \]

Let's try it with \{1, 2, 3, 4\}.
Examples

\[
\frac{1}{1} + \frac{1}{2} + \frac{1}{1 \times 2} = 2.
\]

In that last sum I took every product of \(\{1, 2\}\) in the denom.

Lets try this with \(\{1, 2, 3\}\).

\[
\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{1 \times 2} + \frac{1}{1 \times 3} + \frac{1}{2 \times 3} + \frac{1}{1 \times 2 \times 3} = 3.
\]

Lets try it with \(\{1, 2, 3, 4\}\).

\[
\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{1 \times 2} + \frac{1}{1 \times 3} + \frac{1}{1 \times 4} + \frac{1}{2 \times 3} + \frac{1}{2 \times 4} + \frac{1}{3 \times 4} + \frac{1}{1 \times 2 \times 3 \times 4} = 4.
\]
Let \(n \in \mathbb{N} \). Let \(S_n \) be the **multiset**

\[
S_n = \bigcup_{k=1}^{n} \{a_1 \cdots a_k : a_1, \ldots, a_k \in \{1, \ldots, n\} \land (\forall i, j)[a_i \neq a_j]\}.
\]

Examples

\[S_1 = \{1\}\]

\[S_2 = \{1, 2, 1 \times 2\} = \{1, 2, 2\}\]

\[S_3 = \{1, 2, 3, 1 \times 2, 1 \times 3, 2 \times 3, 1 \times 2 \times 3\} = \{1, 2, 3, 2, 3, 6, 6\}\]
Notation

Let \(n \in \mathbb{N} \). Let \(S_n \) be the multiset

\[
S_n = \bigcup_{k=1}^{n} \{ a_1 \cdots a_k : a_1, \ldots, a_k \in \{1, \ldots, n\} \wedge (\forall i, j)[a_i \neq a_j]\}.
\]

Examples
Notation

Let $n \in \mathbb{N}$. Let S_n be the multiset

$$S_n = \bigcup_{k=1}^{n} \{a_1 \cdots a_k : a_1, \ldots, a_k \in \{1, \ldots, n\} \land (\forall i, j)[a_i \neq a_j]\}.$$

Examples

$$S_1 = \{1\}$$
Notation

Let $n \in \mathbb{N}$. Let S_n be the multiset

$$S_n = \bigcup_{k=1}^{n} \{ a_1 \cdots a_k : a_1, \ldots, a_k \in \{1, \ldots, n\} \land (\forall i, j)[a_i \neq a_j]\}.$$

Examples

$$S_1 = \{1\}$$

$$S_2 = \{1, 2, 1 \times 2\} = \{1, 2, 2\}.$$
Notation

Let $n \in \mathbb{N}$. Let S_n be the multiset

$$S_n = \bigcup_{k=1}^{n} \{a_1 \cdots a_k : a_1, \ldots, a_k \in \{1, \ldots, n\} \land (\forall i, j)[a_i \neq a_j]\}.$$

Examples

$$S_1 = \{1\}$$

$$S_2 = \{1, 2, 1 \times 2\} = \{1, 2, 2\}.$$

$$S_3 = \{1, 2, 3, 1 \times 2, 1 \times 3, 2 \times 3, 1 \times 2 \times 3\} = \{1, 2, 3, 2, 3, 6, 6\}.$$
Restate and Add to Initial Examples

\[\sum_{x \in S_1} \frac{1}{x} = \frac{1}{1} = 1. \]
Restate and Add to Initial Examples

\[\sum_{x \in S_1} \frac{1}{x} = \frac{1}{1} = 1. \]

\[\sum_{x \in S_2} \frac{1}{x} = \frac{1}{1} + \frac{1}{2} + \frac{1}{2} = 2. \]
Restate and Add to Initial Examples

\[\sum_{x \in S_1} \frac{1}{x} = \frac{1}{1} = 1. \]

\[\sum_{x \in S_2} \frac{1}{x} = \frac{1}{1} + \frac{1}{2} + \frac{1}{2} = 2. \]

\[\sum_{x \in S_3} \frac{1}{x} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{1 \times 2} + \frac{1}{1 \times 3} + \frac{1}{2 \times 3} + \frac{1}{1 \times 2 \times 2} = 3. \]
Restate and Add to Initial Examples

\[\sum_{x \in S_1} \frac{1}{x} = \frac{1}{1} = 1. \]

\[\sum_{x \in S_2} \frac{1}{x} = \frac{1}{1} + \frac{1}{2} + \frac{1}{2} = 2. \]

\[\sum_{x \in S_3} \frac{1}{x} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{1 \times 2} + \frac{1}{1 \times 3} + \frac{1}{2 \times 3} + \frac{1}{1 \times 2 \times 2} = 3. \]

\[\sum_{x \in S_4} \frac{1}{x} = 4. \]
Goal

We will prove the following:

\[\text{Theorem} \]

For all \(n \geq 1, \) \(X_x \in S_n \) \(x = n. \)

To prove this we first need a lemma.
Goal

We will prove the following:

Theorem For all $n \geq 1$,

$$\sum_{x \in S_n} \frac{1}{x} = n.$$
We will prove the following:

Theorem For all $n \geq 1$,

$$\sum_{x \in S_n} \frac{1}{x} = n.$$

To prove this we first need a lemma.
Lemma For all $n \geq 2$,
(a) $S_n = S_{n-1} \cup n \cdot S_{n-1} \cup \{n\}$.
(b) $\sum_{x \in S_n} \frac{1}{x} = \sum_{x \in S_{n-1}} \frac{1}{x} + \sum_{x \in S_{n-1}} \frac{1}{nx} + \frac{1}{n}$.
Lemma For all $n \geq 2$,

(a) $S_n = S_{n-1} \cup n \cdot S_{n-1} \cup \{n\}.$

(b) $\sum_{x \in S_n} \frac{1}{x} = \sum_{x \in S_{n-1}} \frac{1}{x} + \sum_{x \in S_{n-1}} \frac{1}{nx} + \frac{1}{n}.$

Proof This is not by induction on $n.$
Lemma For all $n \geq 2$,
(a) $S_n = S_{n-1} \cup n \cdot S_{n-1} \cup \{n\}$.
(b) $\sum_{x \in S_n} \frac{1}{x} = \sum_{x \in S_{n-1}} \frac{1}{x} + \sum_{x \in S_{n-1}} \frac{1}{nx} + \frac{1}{n}$.
Proof This is not by induction on n.
What is in S_n?
Lemma

For all $n \geq 2$,

(a) $S_n = S_{n-1} \cup n \cdot S_{n-1} \cup \{n\}$.

(b) $\frac{1}{x} = \sum_{x \in S_n} \frac{1}{x} = \sum_{x \in S_{n-1}} \frac{1}{x} + \sum_{x \in S_{n-1}} \frac{1}{nx} + \frac{1}{n}$.

Proof This is not by induction on n.

What is in S_n?

1. Everything from S_{n-1}.
Lemma

For all \(n \geq 2 \),
(a) \(S_n = S_{n-1} \cup n \cdot S_{n-1} \cup \{n\} \).
(b) \(\sum_{x \in S_n} \frac{1}{x} = \sum_{x \in S_{n-1}} \frac{1}{x} + \sum_{x \in S_{n-1}} \frac{1}{nx} + \frac{1}{n} \).

Proof This is not by induction on \(n \).

What is in \(S_n \)?

1. Everything from \(S_{n-1} \).
2. Prod. of \(n \) with a set of dist elts from \(\{1, \ldots, n-1\} \).
Lemma For all $n \geq 2$,

(a) $S_n = S_{n-1} \cup n \cdot S_{n-1} \cup \{n\}$.

(b) $\sum_{x \in S_n} \frac{1}{x} = \sum_{x \in S_{n-1}} \frac{1}{x} + \sum_{x \in S_{n-1}} \frac{1}{nx} + \frac{1}{n}$.

Proof This is not by induction on n.

What is in S_n?

1. Everything from S_{n-1}.

2. Prod. of n with a set of dist. elts from $\{1, \ldots, n-1\}$.

 2.1 If the set of dist. elts is $\neq \emptyset$ then this is $n \cdot S_{n-1}$.
Lemma For all $n \geq 2$,

(a) $S_n = S_{n-1} \cup n \cdot S_{n-1} \cup \{n\}$.

(b) $\sum_{x \in S_n} \frac{1}{x} = \sum_{x \in S_{n-1}} \frac{1}{x} + \sum_{x \in S_{n-1}} \frac{1}{nx} + \frac{1}{n}$.

Proof This is not by induction on n.

What is in S_n?

1. Everything from S_{n-1}.
2. Prod. of n with a set of dist. elts from $\{1, \ldots, n-1\}$.

 2.1 If the set of dist. elts is $\neq \emptyset$ then this is $n \cdot S_{n-1}$.
 2.2 If the set of dist. elts is \emptyset then this is $\{n\}$.
Lemma For all $n \geq 2$,

(a) $S_n = S_{n-1} \cup n \cdot S_{n-1} \cup \{n\}$.

(b) $\sum_{x \in S_n} \frac{1}{x} = \sum_{x \in S_{n-1}} \frac{1}{x} + \sum_{x \in S_{n-1}} \frac{1}{nx} + \frac{1}{n}$.

Proof This is **not** by induction on n.

What is in S_n?

1. Everything from S_{n-1}.
2. Prod. of n with a set of dist. elts from $\{1, \ldots, n-1\}$.
 1. If the set of dist. elts is $\neq \emptyset$ then this is $n \cdot S_{n-1}$.
 2. If the set of dist. elts is \emptyset then this is $\{n\}$.

Putting this all together you get the lemma.
Main Theorem

Theorem

For all \(n \geq 1 \), \(P \exists x \in S^n \), \(x = n \).

Proof

We prove this by induction on \(n \).

Base Case

\(S^1 = \{1\} \) so \(P \exists x \in S^1 \), \(x = 1 \).

Inductive Hypothesis

\(P \exists x \in S^{n-1} \), \(x = n-1 \).

Inductive Step

By the Lemma \(\exists x \in S^n \), \(x = x + 1 \).

By the IH this is \(n - 1 + 1 = n \).
Main Theorem

Theorem For all $n \geq 1$, $\sum_{x \in S_n} \frac{1}{x} = n$.
Theorem For all $n \geq 1$, $\sum_{x \in S_n} \frac{1}{x} = n$.

Proof We prove this by induction on n.
Theorem For all $n \geq 1$, $\sum_{x \in S_n} \frac{1}{x} = n$.

Pf We prove this by induction on n.

Base Case $S_1 = \{1\}$ so $\sum_{x \in S_1} \frac{1}{x} = 1$.
Theorem For all \(n \geq 1 \), \(\sum_{x \in S_n} \frac{1}{x} = n \).

Pf We prove this by induction on \(n \).

Base Case \(S_1 = \{1\} \) so \(\sum_{x \in S_1} \frac{1}{x} = 1 \).

IH \(\sum_{x \in S_{n-1}} \frac{1}{x} = n - 1 \).
Main Theorem

Theorem For all \(n \geq 1 \), \(\sum_{x \in S_n} \frac{1}{x} = n \).

Pf We prove this by induction on \(n \).

Base Case \(S_1 = \{1\} \) so \(\sum_{x \in S_1} \frac{1}{x} = 1 \).

IH \(\sum_{x \in S_{n-1}} \frac{1}{x} = n - 1 \).

IS By the Lemma
Main Theorem

Theorem For all $n \geq 1$, $\sum_{x \in S_n} \frac{1}{x} = n$.

Pf We prove this by induction on n.

Base Case $S_1 = \{1\}$ so $\sum_{x \in S_1} \frac{1}{x} = 1$.

IH $\sum_{x \in S_{n-1}} \frac{1}{x} = n - 1$.

IS By the Lemma

$$\sum_{x \in S_n} \frac{1}{x} = \sum_{x \in S_{n-1}} \frac{1}{x} + \sum_{x \in S_{n-1}} \frac{1}{nx} + \frac{1}{n}.$$
Main Theorem

Theorem For all \(n \geq 1 \), \(\sum_{x \in S_n} \frac{1}{x} = n \).

Pf We prove this by induction on \(n \).

Base Case \(S_1 = \{1\} \) so \(\sum_{x \in S_1} \frac{1}{x} = 1 \).

IH \(\sum_{x \in S_{n-1}} \frac{1}{x} = n - 1 \).

IS By the Lemma

\[
\sum_{x \in S_n} \frac{1}{x} = \sum_{x \in S_{n-1}} \frac{1}{x} + \sum_{x \in S_{n-1}} \frac{1}{nx} + \frac{1}{n}.
\]

By the IH this is
Main Theorem

Theorem For all $n \geq 1$, $\sum_{x \in S_n} \frac{1}{x} = n$.

Pf We prove this by induction on n.

Base Case $S_1 = \{1\}$ so $\sum_{x \in S_1} \frac{1}{x} = 1$.

IH $\sum_{x \in S_{n-1}} \frac{1}{x} = n - 1$.

IS By the Lemma

$$\sum_{x \in S_n} \frac{1}{x} = \sum_{x \in S_{n-1}} \frac{1}{x} + \sum_{x \in S_{n-1}} \frac{1}{nx} + \frac{1}{n}.$$

By the IH this is

$$n - 1 + \frac{1}{n} (n - 1) + \frac{1}{n} = n - 1 + n - \frac{1}{n} + \frac{1}{n} = n.$$