Grid Colorings that Avoid Rectangles

October 11, 2024

Credit Where Credit is Due

This talk is based on a paper by Stephen Fenner William Gasarch Charles Glover Semmy Purewal

Ramsey Theory

This talk is an example of Ramsey Theory.

Ramsey Theory

This talk is an example of Ramsey Theory.

I will be teaching CMSC 752: Ramsey Theory and its "Applications" in the Spring of 2025.

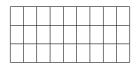
Ramsey Theory

This talk is an example of Ramsey Theory.

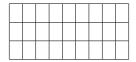
I will be teaching CMSC 752: Ramsey Theory and its "Applications" in the Spring of 2025.

So this talk is an advertisement for the course.

2-Coloring 3×9

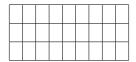


2-Coloring 3×9



Is there a 2-coloring of 3×9 with no mono rectangles?

2-Coloring 3×9

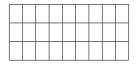


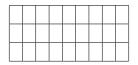
Is there a 2-coloring of 3×9 with no mono rectangles? What is a mono rectangle? Here is a an example:

2-Coloring 3×9

Is there a 2-coloring of 3×9 with no mono rectangles? What is a mono rectangle? Here is a an example:

R			R	
R			R	

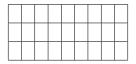




Vote

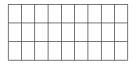
Vote

1. There is a 2-coloring of 3×9 with NO mono rectangles.



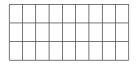
Vote

- 1. There is a 2-coloring of 3×9 with NO mono rectangles.
- 2. All 2-colorings of 3×9 have a mono rectangle.



Vote

- 1. There is a 2-coloring of 3×9 with NO mono rectangles.
- 2. All 2-colorings of 3×9 have a mono rectangle.
- 3. The problem is **UNKNOWN TO SCIENCE**.



Vote

- 1. There is a 2-coloring of 3×9 with NO mono rectangles.
- 2. All 2-colorings of 3×9 have a mono rectangle.
- 3. The problem is **UNKNOWN TO SCIENCE**.

Answer on the next slide.

Given a 2-coloring of 3×9 look at each column.

Given a 2-coloring of 3×9 look at each column.

Each column is either

```
or or or or or or
```

Given a 2-coloring of 3×9 look at each column.

Each column is either

```
or or or or or or
```

Key: A 2-coloring of 3×9 is an 8-coloring of the 9 columns.

Given a 2-coloring of 3×9 look at each column.

Each column is either

Key: A 2-coloring of 3×9 is an 8-coloring of the 9 columns.

So some column-color appears twice.

Given a 2-coloring of 3×9 look at each column.

Each column is either

Key: A 2-coloring of 3×9 is an 8-coloring of the 9 columns.

So some column-color appears twice.

Example:

R			R	
В			В	
R			R	

Given a 2-coloring of 3×9 look at each column.

Each column is either

Key: A 2-coloring of 3×9 is an 8-coloring of the 9 columns.

So some column-color appears twice.

Example:

R			R	
В			В	
R			R	

Can easily show that the two repeat-columns lead to a mono rectangle.

Work in groups:

1. Is there a 2-coloring of 3×8 with no mono rectangles?

- 1. Is there a 2-coloring of 3×8 with no mono rectangles?
- 2. Is there a 2-coloring of 3×7 with no mono rectangles?

- 1. Is there a 2-coloring of 3×8 with no mono rectangles?
- 2. Is there a 2-coloring of 3×7 with no mono rectangles?
- 3. Is there a 2-coloring of 3×6 with no mono rectangles?

- 1. Is there a 2-coloring of 3×8 with no mono rectangles?
- 2. Is there a 2-coloring of 3×7 with no mono rectangles?
- 3. Is there a 2-coloring of 3×6 with no mono rectangles?
- 4. Is there a 2-coloring of 3×5 with no mono rectangles?

- 1. Is there a 2-coloring of 3×8 with no mono rectangles?
- 2. Is there a 2-coloring of 3×7 with no mono rectangles?
- 3. Is there a 2-coloring of 3×6 with no mono rectangles?
- 4. Is there a 2-coloring of 3×5 with no mono rectangles?
- 5. Is there a 2-coloring of 3×4 with no mono rectangles?

- 1. Is there a 2-coloring of 3×8 with no mono rectangles?
- 2. Is there a 2-coloring of 3×7 with no mono rectangles?
- 3. Is there a 2-coloring of 3×6 with no mono rectangles?
- 4. Is there a 2-coloring of 3×5 with no mono rectangles?
- 5. Is there a 2-coloring of 3×4 with no mono rectangles?
- 6. Is there a 2-coloring of 3×3 with no mono rectangles? YES:

Work in groups:

- 1. Is there a 2-coloring of 3×8 with no mono rectangles?
- 2. Is there a 2-coloring of 3×7 with no mono rectangles?
- 3. Is there a 2-coloring of 3×6 with no mono rectangles?
- 4. Is there a 2-coloring of 3×5 with no mono rectangles?
- 5. Is there a 2-coloring of 3×4 with no mono rectangles?
- 6. Is there a 2-coloring of 3×3 with no mono rectangles? YES:

Example:

R	В	R
R	В	В
R	R	В

1. Is there a 2-coloring of 3×8 with no mono rectangles?

Is there a 2-coloring of 3 × 8 with no mono rectangles?
 NO: to avoid a repeat col must have col Easily get mono rectangle.

- Is there a 2-coloring of 3 × 8 with no mono rectangles?
 NO: to avoid a repeat col must have col Easily get mono rectangle.
- 2. Is there a 2-coloring of 3×7 with no mono rectangles?

- Is there a 2-coloring of 3 × 8 with no mono rectangles?
 NO: to avoid a repeat col must have col Easily get mono rectangle.
- Is there a 2-coloring of 3 × 7 with no mono rectangles?
 NO: to avoid a repeat col must have col OR
 Easily get mono rectangle.

- Is there a 2-coloring of 3 × 8 with no mono rectangles?
 NO: to avoid a repeat col must have col Easily get mono rectangle.
- Is there a 2-coloring of 3 × 7 with no mono rectangles?
 NO: to avoid a repeat col must have col OR
 Easily get mono rectangle.
- 3. Is there a 2-coloring of 3×6 with no mono rectangles?

- Is there a 2-coloring of 3 × 8 with no mono rectangles?
 NO: to avoid a repeat col must have col Easily get mono rectangle.
- Is there a 2-coloring of 3 × 7 with no mono rectangles?
 NO: to avoid a repeat col must have col OR
 Easily get mono rectangle.
- 3. Is there a 2-coloring of 3×6 with no mono rectangles? YES

2-Coloring 3×8 , 3×7 , ...

- Is there a 2-coloring of 3 × 8 with no mono rectangles?
 NO: to avoid a repeat col must have col Easily get mono rectangle.
- Is there a 2-coloring of 3 × 7 with no mono rectangles?
 NO: to avoid a repeat col must have col OR
 Easily get mono rectangle.
- 3. Is there a 2-coloring of 3×6 with no mono rectangles? YES

R	R	R	В	В	В
R	В	В	R	В	R
В	R	В	В	R	R

2-Coloring 3×8 , 3×7 , ...

- Is there a 2-coloring of 3 × 8 with no mono rectangles?
 NO: to avoid a repeat col must have col Easily get mono rectangle.
- Is there a 2-coloring of 3 × 7 with no mono rectangles?
 NO: to avoid a repeat col must have col OR
 Easily get mono rectangle.
- 3. Is there a 2-coloring of 3×6 with no mono rectangles? YES

R	R	R	В	В	В
R	В	В	R	В	R
В	R	В	В	R	R

4. Hence there is a 2-coloring of 3×5 , 3×4 , 3×3 with no mono rectangles.

 $a \times b$ is *2-colorable* if there is a 2-coloring with no mono rectangles. What we know

 \triangleright 2 × *b* is always 2-colorable

- \triangleright 2 × *b* is always 2-colorable
- ▶ 3×3 , 3×4 , 3×5 , 3×6 are all 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- \blacktriangleright 3 × 3, 3 × 4, 3 × 5, 3 × 6 are all 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- \blacktriangleright 3 × 3, 3 × 4, 3 × 5, 3 × 6 are all 2-colorable.
- ▶ $3 \times b$ where b > 7 NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 unknown so far.

- \triangleright 2 × *b* is always 2-colorable
- \blacktriangleright 3 × 3, 3 × 4, 3 × 5, 3 × 6 are all 2-colorable.
- ▶ $3 \times b$ where b > 7 NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 unknown so far.
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- \blacktriangleright 3 × 3, 3 × 4, 3 × 5, 3 × 6 are all 2-colorable.
- ▶ $3 \times b$ where b > 7 NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 unknown so far.
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 5 × 5, 5 × 6 unknown so far.

- \triangleright 2 × *b* is always 2-colorable
- \blacktriangleright 3 × 3, 3 × 4, 3 × 5, 3 × 6 are all 2-colorable.
- ▶ $3 \times b$ where b > 7 NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 unknown so far.
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 5 × 5, 5 × 6 unknown so far.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- \blacktriangleright 3 × 3, 3 × 4, 3 × 5, 3 × 6 are all 2-colorable.
- ▶ $3 \times b$ where b > 7 NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 unknown so far.
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 5 × 5, 5 × 6 unknown so far.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.
- ► 6 × 6 unknown so far.

- \triangleright 2 × *b* is always 2-colorable
- \blacktriangleright 3 × 3, 3 × 4, 3 × 5, 3 × 6 are all 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 unknown so far.
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 5 × 5, 5 × 6 unknown so far.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.
- ► 6 × 6 unknown so far.
- ▶ $6 \times b$ where $b \ge 7$ NOT 2-colorable.

 $a \times b$ is 2-colorable if there is a 2-coloring with no mono rectangles. What we know

- \triangleright 2 × *b* is always 2-colorable
- \blacktriangleright 3 × 3, 3 × 4, 3 × 5, 3 × 6 are all 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 unknown so far.
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 5 × 5, 5 × 6 unknown so far.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.
- ► 6 × 6 unknown so far.
- ▶ $6 \times b$ where $b \ge 7$ NOT 2-colorable.

Work on the 4×4 , 4×5 4×6 .

4×6 IS 2-Colorable

What we know

 \triangleright 2 × *b* is always 2-colorable

- \triangleright 2 × *b* is always 2-colorable
- \blacktriangleright 3 × 3, 3 × 4, 3 × 5, 3 × 6 are all 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- ightharpoonup 3 imes 3, 3 imes 4, 3 imes 5, 3 imes 6 are all 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- ightharpoonup 3 imes 3, 3 imes 4, 3 imes 5, 3 imes 6 are all 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable

- \triangleright 2 × *b* is always 2-colorable
- \blacktriangleright 3 × 3, 3 × 4, 3 × 5, 3 × 6 are all 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- \blacktriangleright 3 × 3, 3 × 4, 3 × 5, 3 × 6 are all 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- ▶ 5×5 , 5×6 unknown so far.

- \triangleright 2 × *b* is always 2-colorable
- \blacktriangleright 3 × 3, 3 × 4, 3 × 5, 3 × 6 are all 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 5 × 5, 5 × 6 unknown so far.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- \blacktriangleright 3 × 3, 3 × 4, 3 × 5, 3 × 6 are all 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 5 × 5, 5 × 6 unknown so far.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 6 × 6 unknown so far.

- \triangleright 2 × *b* is always 2-colorable
- ightharpoonup 3 imes 3, 3 imes 4, 3 imes 5, 3 imes 6 are all 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 5 × 5, 5 × 6 unknown so far.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.
- ► 6 × 6 unknown so far.
- ▶ $6 \times b$ where $b \ge 7$ NOT 2-colorable.

What we know

- \triangleright 2 × *b* is always 2-colorable
- \blacktriangleright 3 × 3, 3 × 4, 3 × 5, 3 × 6 are all 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 5 × 5, 5 × 6 unknown so far.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 6 × 6 unknown so far.
- ▶ $6 \times b$ where $b \ge 7$ NOT 2-colorable.

Work on 5×5 , 5×6 .

5 × 5 IS NOT 2-Colorable!

Let COL be a 2-coloring of $5\times5.$

5 × 5 IS NOT 2-Colorable!

Let COL be a 2-coloring of 5×5 . Some color must occur ≥ 13 times.

Case 1: There is a column with 5 R's

Case 1: There is a column with 5 R's.

$$\mathbf{R}$$
 o o o o

Remaining columns have $\leq 1 R$ so

Number of R's
$$\leq 5 + 1 + 1 + 1 + 1 = 9 < 13$$
.

Case 2: There is a column with 4 R's

Case 2: There is a column with 4 R's.

Remaining columns have $\leq 2 \text{ R's}$

Number of R's
$$\leq 4 + 2 + 2 + 2 + 2 \leq 12 < 13$$

Case 3: Max in a column is 3 R's

Case 3: Max in a column is 3 R's.

Case 3a: There are ≤ 2 columns with 3 R's.

Number of R's
$$\leq 3 + 3 + 2 + 2 + 2 \leq 12 < 13$$
.

Case 3b: There are ≥ 3 columns with 3 R's.

Can't put in a third column with 3 R's!

Case 4: Max in a column is $\leq 2R$'s

Case 4: Max in a column is $\leq 2R$'s.

Number of R's
$$\leq 2 + 2 + 2 + 2 + 2 \leq 10 < 13$$
.

No more cases. We are Done! Q.E.D.

4□ > 4回 > 4 = > 4 = > = 900

What we know

 \triangleright 2 × *b* is always 2-colorable

- \triangleright 2 × *b* is always 2-colorable
- ▶ 3×3 , 3×4 , 3×5 , 3×6 are all 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- \blacktriangleright 3 × 3, 3 × 4, 3 × 5, 3 × 6 are all 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- \blacktriangleright 3 × 3, 3 × 4, 3 × 5, 3 × 6 are all 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- ▶ 4×4 , 4×5 , 4×6 are 2-colorable

- \triangleright 2 × *b* is always 2-colorable
- \blacktriangleright 3 × 3, 3 × 4, 3 × 5, 3 × 6 are all 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- \blacktriangleright 3 × 3, 3 × 4, 3 × 5, 3 × 6 are all 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- ▶ 5×5 , 5×6 NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- \blacktriangleright 3 × 3, 3 × 4, 3 × 5, 3 × 6 are all 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- ▶ 5×5 , 5×6 NOT 2-colorable.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- \blacktriangleright 3 × 3, 3 × 4, 3 × 5, 3 × 6 are all 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 5 × 5, 5 × 6 NOT 2-colorable.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 6 × 6 NOT 2-colorable.

What we know

- \triangleright 2 × *b* is always 2-colorable
- \blacktriangleright 3 × 3, 3 × 4, 3 × 5, 3 × 6 are all 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 5 × 5, 5 × 6 NOT 2-colorable.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 6 × 6 NOT 2-colorable.

We now know **exactly** what grids are 2-colorable.

What we know

- \triangleright 2 × *b* is always 2-colorable
- \blacktriangleright 3 × 3, 3 × 4, 3 × 5, 3 × 6 are all 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 5 × 5, 5 × 6 NOT 2-colorable.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 6 × 6 NOT 2-colorable.

We now know **exactly** what grids are 2-colorable. Can we say it more succinctly?

Def $n \times m$ contains $a \times b$ if $a \le n$ and $b \le m$. **Thm** For all c there exists a unique finite set of grids OBS_c such that

 $n \times m$ is c-colorable **iff** $n \times m$ does not contain any element of OBS_c.

Def $n \times m$ contains $a \times b$ if $a \le n$ and $b \le m$.

Thm For all c there exists a unique finite set of grids OBS_c such that

 $n \times m$ is c-colorable iff

 $n \times m$ does not contain any element of OBS_c .

1.
$$OBS_2 = \{3 \times 7, 7 \times 3, 5 \times 5\}.$$

Def $n \times m$ contains $a \times b$ if $a \le n$ and $b \le m$.

Thm For all c there exists a unique finite set of grids OBS_c such that

 $n \times m$ is c-colorable iff

 $n \times m$ does not contain any element of OBS_c .

- 1. $OBS_2 = \{3 \times 7, 7 \times 3, 5 \times 5\}.$
- 2. Can prove Thm using well-quasi-orderings. No bound on $|OBS_c|$.

Def $n \times m$ contains $a \times b$ if $a \le n$ and $b \le m$.

Thm For all c there exists a unique finite set of grids OBS_c such that

 $n \times m$ is c-colorable iff

 $n \times m$ does not contain any element of OBS_c .

- 1. $OBS_2 = \{3 \times 7, 7 \times 3, 5 \times 5\}.$
- 2. Can prove Thm using well-quasi-orderings. No bound on $|OBS_c|$.
- 3. We showed $2\sqrt{c}(1-o(1)) \le |OBS_c| \le 2c^2$.

The theorem $a \times b$ is 2-colorable iff no elements of $OBS_2 = \{3 \times 7, 7 \times 3, 5 \times 5\}$ fits into $a \times b$ was proven by cleverness.

The theorem

```
a \times b is 2-colorable iff no elements of OBS_2 = \{3 \times 7, 7 \times 3, 5 \times 5\} fits into a \times b
```

was proven by cleverness.

The theorem

```
a \times b is 2-colorable iff no elements of OBS_2 = \{3 \times 7, 7 \times 3, 5 \times 5\} fits into a \times b
```

was proven by cleverness.

Could it have been proven by

1. Quantum?

The theorem

```
a \times b is 2-colorable iff no elements of OBS_2 = \{3 \times 7, 7 \times 3, 5 \times 5\} fits into a \times b
```

was proven by cleverness.

- 1. Quantum?
- 2. Machine Learning?

The theorem

```
a \times b is 2-colorable iff no elements of OBS_2 = \{3 \times 7, 7 \times 3, 5 \times 5\} fits into a \times b
```

was proven by cleverness.

- 1. Quantum?
- 2. Machine Learning?
- 3. Quantum Machine Learning?

The theorem

```
a \times b is 2-colorable iff no elements of OBS<sub>2</sub> = \{3 \times 7, 7 \times 3, 5 \times 5\} fits into a \times b
```

was proven by cleverness.

- 1. Quantum?
- 2. Machine Learning?
- 3. Quantum Machine Learning? (If so then great for funding!)

The theorem

```
a \times b is 2-colorable iff no elements of OBS_2 = \{3 \times 7, 7 \times 3, 5 \times 5\} fits into a \times b
```

was proven by cleverness.

- 1. Quantum?
- 2. Machine Learning?
- 3. Quantum Machine Learning? (If so then great for funding!)
- 4. (more seriously)

The theorem

```
a \times b is 2-colorable iff no elements of OBS_2 = \{3 \times 7, 7 \times 3, 5 \times 5\} fits into a \times b
```

was proven by cleverness.

- 1. Quantum?
- 2. Machine Learning?
- 3. Quantum Machine Learning? (If so then great for funding!)
- 4. (more seriously)
- 5. SAT Solvers?

The theorem

```
a \times b is 2-colorable iff no elements of OBS_2 = \{3 \times 7, 7 \times 3, 5 \times 5\} fits into a \times b
```

was proven by cleverness.

- 1. Quantum?
- 2. Machine Learning?
- 3. Quantum Machine Learning? (If so then great for funding!)
- 4. (more seriously)
- 5. SAT Solvers?
- 6. ChatGPT?

The theorem

```
a \times b is 2-colorable iff no elements of OBS_2 = \{3 \times 7, 7 \times 3, 5 \times 5\} fits into a \times b
```

was proven by cleverness.

Could it have been proven by

- 1. Quantum?
- 2. Machine Learning?
- 3. Quantum Machine Learning? (If so then great for funding!)
- 4. (more seriously)
- 5. SAT Solvers?
- 6. ChatGPT?

Since 2-coloring has been solved why ask this question?

The theorem

```
a \times b is 2-colorable iff no elements of OBS_2 = \{3 \times 7, 7 \times 3, 5 \times 5\} fits into a \times b
```

was proven by cleverness.

Could it have been proven by

- 1. Quantum?
- 2. Machine Learning?
- 3. Quantum Machine Learning? (If so then great for funding!)
- 4. (more seriously)
- 5. SAT Solvers?
- 6. ChatGPT?

Since 2-coloring has been solved why ask this question? 3-coloring is known. 4-coloring is known. 5-coloring is open!

Main Question

Fix c What is OBS_c

Main Question

Fix c What is OBS_c

We developed tools to get us both colorings and non-colorings. They helped us get some of our results, but (alas) to many had to be done ad-hoc.

3-COLORABILITY

We will **EXACTLY** Characterize which $n \times m$ are 3-colorable!

Thm

1. The following grids are not 3-colorable.

Thm

1. The following grids are not 3-colorable.

$$4\times19,\ 19\times4,\ 5\times16,\ 16\times5,\ 7\times13,\ 13\times7,\ 10\times12,\ 12\times10,\ 11\times11.$$

Thm

- 1. The following grids are not 3-colorable. 4×19 , 19×4 , 5×16 , 16×5 , 7×13 , 13×7 , 10×12 , 12×10 , 11×11 .
- 2. The following grids **are** 3-colorable.

Thm

- 1. The following grids are not 3-colorable. 4×19 , 19×4 , 5×16 , 16×5 , 7×13 , 13×7 , 10×12 , 12×10 , 11×11 .
- 2. The following grids are 3-colorable. 3×19 , 19×3 , 4×18 , 18, 6×15 , 15×6 , 9×12 , 12×9 .

Thm

- 1. The following grids are not 3-colorable. 4×19 , 19×4 , 5×16 , 16×5 , 7×13 , 13×7 , 10×12 , 12×10 , 11×11 .
- 2. The following grids are 3-colorable. $3\times19,\ 19\times3,\ 4\times18,\ 18,\ 6\times15,\ 15\times6,\ 9\times12,\ 12\times9.$

Follows from tools.

10×10 is 3-colorable

Thm 10×10 is 3-colorable. UGLY! TOOLS DID NOT HELP AT ALL!!

R	R	R	R	В	В	G	G	В	G
R	В	В	G	R	R	R	G	G	В
G	R	В	G	R	В	В	R	R	G
G	В	R	В	В	R	G	R	G	R
R	В	G	G	G	В	G	В	R	R
G	R	В	В	G	G	R	В	В	R
В	G	R	В	G	В	R	G	R	В
В	В	G	R	R	G	В	G	В	R
G	G	G	R	В	R	В	В	R	В
В	G	В	R	В	G	R	R	G	G

10×11 is not 3-colorable

Thm 10×11 is not 3-colorable. You don't want to see this. UGLY case hacking.

Complete Char of 3-colorability

 $\textbf{Thm} \,\, \mathrm{OBS}_3 =$

$$\{4\times 19, 5\times 16, 7\times 13, 10\times 11, 11\times 10, 13\times 7, 16\times 5, 19\times 4\}$$

Complete Char of 3-colorability

Thm
$$OBS_3 =$$

$$\{4 \times 19, 5 \times 16, 7 \times 13, 10 \times 11, 11 \times 10, 13 \times 7, 16 \times 5, 19 \times 4\}$$

Follows from our tools and the ad-hoc results.

```
The theorem a \times b is 3-colorable iff no elements of OBS_3 = \{4 \times 19, 5 \times 16, 7 \times 13, 10 \times 11\} \cup \{11 \times 10, 13 \times 7, 16 \times 5, 19 \times 4\} fits into a \times b
```

was proven by cleverness.

Can it be proven by

```
The theorem a \times b is 3-colorable iff no elements of OBS_3 = \{4 \times 19, 5 \times 16, 7 \times 13, 10 \times 11\} \cup \{11 \times 10, 13 \times 7, 16 \times 5, 19 \times 4\} fits into a \times b was proven by cleverness.
```

```
The theorem a \times b is 3-colorable iff no elements of OBS_3 = \{4 \times 19, 5 \times 16, 7 \times 13, 10 \times 11\} \cup \{11 \times 10, 13 \times 7, 16 \times 5, 19 \times 4\} fits into a \times b
```

was proven by cleverness.

Can it be proven by

1. Machine Learning?

The theorem

```
a\times b is 3-colorable iff no elements of OBS_3=\{4\times 19,5\times 16,7\times 13,10\times 11\}\cup \{11\times 10,13\times 7,16\times 5,19\times 4\} fits into a\times b
```

was proven by cleverness.

Can it be proven by

- 1. Machine Learning?
- 2. SAT Solvers?

The theorem

```
a \times b is 3-colorable iff no elements of OBS_3 = \{4 \times 19, 5 \times 16, 7 \times 13, 10 \times 11\} \cup \{11 \times 10, 13 \times 7, 16 \times 5, 19 \times 4\} fits into a \times b
```

was proven by cleverness.

Can it be proven by

- 1. Machine Learning?
- 2. SAT Solvers?
- 3. ChatGPT?

The theorem

```
a\times b is 3-colorable iff no elements of OBS_3=\{4\times 19,5\times 16,7\times 13,10\times 11\}\cup \{11\times 10,13\times 7,16\times 5,19\times 4\} fits into a\times b
```

was proven by cleverness.

Can it be proven by

- 1. Machine Learning?
- 2. SAT Solvers?
- 3. ChatGPT?

Since 2-coloring has been solved why ask this question?

The theorem

```
a\times b is 3-colorable iff no elements of OBS_3=\{4\times 19,5\times 16,7\times 13,10\times 11\}\cup \{11\times 10,13\times 7,16\times 5,19\times 4\} fits into a\times b
```

was proven by cleverness.

Can it be proven by

- 1. Machine Learning?
- 2. SAT Solvers?
- 3. ChatGPT?

Since 2-coloring has been solved why ask this question? 4-coloring is known. 5-coloring is open!

The theorem

```
a\times b is 3-colorable iff no elements of OBS_3=\{4\times 19,5\times 16,7\times 13,10\times 11\}\cup \{11\times 10,13\times 7,16\times 5,19\times 4\} fits into a\times b
```

was proven by cleverness.

Can it be proven by

- 1. Machine Learning?
- 2. SAT Solvers?
- 3. ChatGPT?

Since 2-coloring has been solved why ask this question? 4-coloring is known. 5-coloring is open! If the answer is NO then we have found a problem that AI can't do!

4-COLORABILITY

From now on $G_{a,b}$ is $a \times b$.

We will **EXACTLY** Characterize which $G_{n,m}$ are 4-colorable!

Easy NOT 4-Colorable Results

Thm The following grids **are** NOT 4-colorable:

- 1. $G_{5,41}$ and $G_{41,5}$
- 2. $G_{6,31}$ and $G_{31,6}$
- 3. $G_{7,29}$ and $G_{29,7}$
- 4. $G_{9,25}$ and $G_{25,9}$
- 5. $G_{10,23}$ and $G_{23,10}$
- 6. $G_{11,22}$ and $G_{22,11}$
- 7. $G_{13,21}$ and $G_{21,13}$
- 8. $G_{17,20}$ and $G_{20,17}$
- 9. $G_{18,19}$ and $G_{19,18}$

Easy NOT 4-Colorable Results

Thm The following grids **are** NOT 4-colorable:

- 1. $G_{5,41}$ and $G_{41,5}$
- 2. $G_{6,31}$ and $G_{31,6}$
- 3. $G_{7,29}$ and $G_{29,7}$
- 4. $G_{9,25}$ and $G_{25,9}$
- 5. $G_{10,23}$ and $G_{23,10}$
- 6. $G_{11,22}$ and $G_{22,11}$
- 7. $G_{13,21}$ and $G_{21,13}$
- 8. $G_{17,20}$ and $G_{20,17}$
- 9. $G_{18,19}$ and $G_{19,18}$

Follows from our tools.

Easy IS 4-Colorable Results

Thm The following grids **are** 4-colorable:

- 1. $G_{4,41}$ and $G_{41,4}$.
- 2. $G_{5,40}$ and $G_{40,5}$.
- 3. $G_{6,30}$ and $G_{30,6}$.
- 4. $G_{8,28}$ and $G_{28,8}$.
- 5. $G_{16,20}$ and $G_{20,16}$.

Easy IS 4-Colorable Results

Thm The following grids **are** 4-colorable:

- 1. $G_{4,41}$ and $G_{41,4}$.
- 2. $G_{5,40}$ and $G_{40,5}$.
- 3. $G_{6,30}$ and $G_{30,6}$.
- 4. $G_{8,28}$ and $G_{28,8}$.
- 5. $G_{16,20}$ and $G_{20,16}$.

Follows from our tools.

Theorems with UGLY Proofs

Thm

1. $G_{17,19}$ is NOT 4-colorable: Some Tools, Some ad-hoc.

Theorems with UGLY Proofs

Thm

- 1. $G_{17,19}$ is NOT 4-colorable: Some Tools, Some ad-hoc.
- 2. $G_{24,9}$ is 4-colorable: Some Tools, Some ad-hoc.

Results about 4-COL So Far in This Talk

Thm

1. The following grids are in OBS_4 : $G_{5,41}$, $G_{6,31}$, $G_{7,29}$, $G_{9,25}$, $G_{10,23}$, $G_{11,22}$, $G_{22,11}$, $G_{23,10}$, $G_{25,9}$, $G_{29,7}$, $G_{31,6}$, $G_{41,5}$.

Results about 4-COL So Far in This Talk

Thm

- 1. The following grids are in OBS₄: $G_{5,41}$, $G_{6,31}$, $G_{7,29}$, $G_{9,25}$, $G_{10,23}$, $G_{11,22}$, $G_{22,11}$, $G_{23,10}$, $G_{25,9}$, $G_{29,7}$, $G_{31,6}$, $G_{41,5}$.
- 2. The following grids status is unknown: $G_{10,22}$, $G_{12,21}$, $G_{17,17}$, $G_{17,18}$, $G_{18,18}$, $G_{18,17}$, $G_{21,21}$, $G_{22,10}$.

Rectangle Free Conjecture

The following is obvious:

Lemma Let $n, m, c \in \mathbb{N}$. If $G_{n,m}$ is c-colorable then some color occurs $\geq \lceil nm/c \rceil$ times. Hence there is a rectangle free subset of $G_{n,m}$ with $\geq \lceil nm/c \rceil$ elements.

Rectangle Free Conjecture

The following is obvious:

Lemma Let $n, m, c \in \mathbb{N}$. If $G_{n,m}$ is c-colorable then some color occurs $\geq \lceil nm/c \rceil$ times. Hence there is a rectangle free subset of $G_{n,m}$ with $\geq \lceil nm/c \rceil$ elements.

Rectangle-Free Conjecture (RFC) is the converse:

Let $n, m, c \ge 2$. If there is a rectangle free subset of size of $G_{n,m}$ which is $\ge \lceil nm/c \rceil$ then $G_{n,m}$ is c-colorable.

Rect-Free Subset of $G_{22,10}$ of size $55 = \left\lceil \frac{22 \cdot 10}{4} \right\rceil$

	01	02	03	04	05	06	07	08	09	10
1	•						•			
2		•					•			
3			•				•			
4				•			•			
5					•		•			
6						•	•			
7	•	•						•		
8			•	•				•		
9					•	•		•		
10		•	•						•	
11				•	•				•	
12	•					•			•	
13	•			•						•
14		•				•				•
15			•		•					•
16		•			•					
17	•		•							
18				•		•				
19			•			•				
20		•		•						
21	•				•					
22							•	•	•	•

4-coloring of $G_{22,10}$ Due to Brad Loren

	1	2	3	4	5	6	7	8	9	10
1	0	G	R	R	G	G	0	0	В	В
2	G	O	В	G	В	В	O	R	O	R
3	В	G	В	R	O	O	G	R	O	В
4	0	O	G	G	R	R	В	В	G	O
5	0	В	O	O	G	R	R	G	G	R
6	0	В	R	В	R	O	G	R	G	G
7	G	O	G	O	В	O	R	В	R	G
8	0	R	R	В	O	В	G	G	В	R
9	0	В	В	R	R	G	R	G	O	G
10	R	R	В	В	0	G	R	В	G	O
11	R	G	G	O	R	В	В	G	O	R
12	R	В	R	G	G	O	O	В	В	G
13	В	R	G	В	G	R	В	R	O	O
14	G	G	O	В	В	O	R	R	G	В
15	R	G	O	R	В	R	В	O	O	G
16	В	В	O	G	O	В	O	G	R	R
17	G	0	В	R	0	G	В	0	В	R
18	R	В	G	0	В	G	0	R	R	O
19	G	В	R	O	O	R	В	G	R	В
20	В	R	O	G	R	G	G	В	R	O
21	В	R	G	R	В	O	G	O	В	O
22	G	0	O	R	G	В	G	В	R	В

Rect-Free Subset of $G_{21,12}$ of size $63 = \left\lceil \frac{21 \cdot 12}{4} \right\rceil$

	01	02	03	04	05	06	07	08	09	10	11	12
1	•	•										
2	•		•									
3		•	•									
4			•	•	•							
5		•		•		•						
6	•				•	•						
7						•	•	•				
8					•		•		•			
9				•				•	•			
10						•				•	•	
11					•					•		•
12				•							•	•
13			•			•			•			•
14			•					•		•		
15			•				•				•	
16		•							•	•		
17		•			•			•			•	
18		•					•					•
19	•								•		•	
20	•							•				•
21	•			•			•			•		

Tom Sirgedas's 4-coloring of 21×12

R	В	В	G	В	R	G	0	0	G	R	G
В	R	В	R	G	В	0	G	0	G	G	R
В	В	R	В	R	G	0	0	G	R	G	G
G	0	В	0	R	R	R	В	0	G	В	0
В	G	0	R	0	R	0	R	В	0	G	В
0	В	G	R	R	0	В	0	R	В	0	G
В	0	R	G	В	0	В	G	G	0	В	R
R	В	0	0	G	В	G	В	G	R	0	В
0	R	В	В	0	G	G	G	В	В	R	0
G	R	R	В	В	R	G	0	R	0	G	0
R	G	R	R	В	В	R	G	0	0	0	G
R	R	G	В	R	В	0	R	G	G	0	0
G	0	0	R	G	В	В	0	В	R	R	G
0	G	0	В	R	G	В	В	0	G	R	R
0	0	G	G	В	R	0	В	В	R	G	R
G	0	В	G	0	G	В	R	R	R	0	В
В	G	0	G	G	0	R	В	R	В	R	0
0	В	G	0	G	G	R	R	В	0	В	R
G	G	R	0	В	0	0	R	G	В	R	В
R	G	G	0	0	В	G	0	R	В	В	R
G	R	G	В	0	0	R	G	0	R	В	В

Rect-Free Subset of $G_{18,18}$ of size $81 = \left\lceil \frac{18 \cdot 18}{4} \right\rceil$

	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18
1		•		•										•		•	•	
2	•	•								•	•		•					
3	•								•						•	•		•
4						•			•			•	•	•				
5		•	•			•												•
6	•			•		•	•											
7							•	•		•				•				•
8			•				•		•		•						•	
9		•			•		•					•			•			
10				•							•	•						•
11	•		•		•									•				
12			•	•				•					•		•			
13					•	•		•			•					•		
14	•							•				•					•	
15				•	•				•	•								
16						•				•					•		•	
17			•							•		•				•		
18					•								•				•	•

If RFC is true then $G_{18,18}$ is 4-colorable. NOTE: If delete 2nd column and 5th Row have 74-sized RFC of $G_{17,17}$.

On Nov 30, 2009 I posted a blog with the following offer: The first person to email me both a 4-coloring of the 17×17 grid that has no monochromatic rectangles will receive \$289.00.

On Nov 30, 2009 I posted a blog with the following offer: The first person to email me both a 4-coloring of the 17×17 grid that has no monochromatic rectangles will receive \$289.00.

Also want to know about 18×18 .

On Nov 30, 2009 I posted a blog with the following offer: The first person to email me both a 4-coloring of the 17×17 grid that has no monochromatic rectangles will receive \$289.00.

Also want to know about 18×18 .

Bernd Steinbach and Christian Postoff showed both $G_{18,18}$ is 4-colorable and they are \$289 richer!

On Nov 30, 2009 I posted a blog with the following offer: The first person to email me both a 4-coloring of the 17×17 grid that has no monochromatic rectangles will receive \$289.00.

Also want to know about 18×18 .

Bernd Steinbach and Christian Postoff showed both $G_{18,18}$ is 4-colorable and they are \$289 richer!

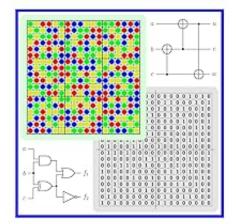
They used a very deep analysis that allowed for a strong reduction of the problem, and then used the Universal SAT-Solver Clasp.

Steinbach & Postoff's 4-Coloring of $G_{18,18}$

R	B	B	R	0	0	0	R	G	R	R	G	0	G	В	G	0	B
G	R	0	0	0	G	G	В	0	R	В	В	R	R	В	G	В	G
В	В	G	G	R	R	0	В	0	В	R	0	R	G	0	0	R	G
R	R	G	В	0	G	R	В	R	0	0	G	В	0	G	0	R	В
В	0	В	G	G	0	G	G	0	R	В	G	В	0	R	В	R	R
G	0	0	R	R	В	В	В	R	0	G	G	G	R	0	В	0	R
В	R	G	В	В	В	G	0	G	G	R	0	G	0	В	R	0	R
0	R	0	G	R	В	0	R	В	В	В	R	G	0	G	G	G	В
0	0	R	G	0	G	В	R	В	G	G	0	В	R	В	R	R	0
В	G	G	0	G	0	В	R	R	0	G	0	R	В	R	G	В	В
0	R	R	R	В	R	G	0	0	0	G	В	0	G	R	В	G	В
G	В	G	0	В	R	В	G	R	R	В	R	0	0	0	R	G	0
G	В	0	В	G	R	R	R	В	G	0	0	0	G	G	В	В	R
G	G	0	G	В	0	R	0	G	В	R	R	В	R	R	0	В	0
0	G	В	R	В	0	R	В	В	G	0	G	R	В	0	R	G	G
R	G	В	В	R	G	В	G	0	В	0	В	G	G	R	R	0	0
R	0	R	0	G	G	0	0	G	В	0	R	R	В	В	В	G	R
0	В	R	0	R	В	R	G	G	R	G	В	В	B	G	Q	Q	G
																_	المبر

The 4-Coloring of 18×18 on Cover of a Book Edited by Steinbach

Recent Progress in the Boolean Domain



OBS_4 IS

Given the 4-colorings of $G_{18,18}$, $G_{21,12}$, $G_{22,10}$ we now have that $\mathrm{OBS_4}$ is

OBS_4 IS

Given the 4-colorings of $G_{18,18}$, $G_{21,12}$, $G_{22,10}$ we now have that $\mathrm{OBS_4}$ is

```
 \{G_{5,41}, G_{6,31}, G_{7,29}, G_{9,25}, G_{10,23}, G_{11,22}\} \cup \\ \{G_{22,11}, G_{23,10}, G_{25,9}, G_{29,7}, G_{31,6}, G_{41,5}\}.
```

OBS_4 IS

Given the 4-colorings of $G_{18,18}$, $G_{21,12}$, $G_{22,10}$ we now have that $\mathrm{OBS_4}$ is

$$\{G_{5,41}, G_{6,31}, G_{7,29}, G_{9,25}, G_{10,23}, G_{11,22}\} \cup \{G_{22,11}, G_{23,10}, G_{25,9}, G_{29,7}, G_{31,6}, G_{41,5}\}.$$

The usual **Research Question:** Can we get OBS₄ with Al?

The following is known but much harder:

The following is known but much harder: **Thm**

The following is known but much harder:

Thm

1. There exists N such that, for all 2-colorings of $N \times N$, there exists a monochromatic **square**. (The proof gives an enormous value of N though by a computer search its known that N=15 is the min value that works.)

The following is known but much harder:

Thm

- 1. There exists N such that, for all 2-colorings of $N \times N$, there exists a monochromatic **square**. (The proof gives an enormous value of N though by a computer search its known that N=15 is the min value that works.)
- 2. For all c there exists N = N(c) such that, for all c-colorings of $N \times N$, there exists a monochromatic **square**. (N(2) = 15 is known. Beyond that I believe nothing is known.)

The following is known but much harder:

Thm

- 1. There exists N such that, for all 2-colorings of $N \times N$, there exists a monochromatic **square**. (The proof gives an enormous value of N though by a computer search its known that N = 15 is the min value that works.)
- 2. For all c there exists N = N(c) such that, for all c-colorings of $N \times N$, there exists a monochromatic square. (N(2) = 15 is known. Beyond that I believe nothing is known.)

If you want to see the proof that for all c, N(c) exists then Take CMSC 752 in Spring 2025

1. What is OBS_5 ?

- 1. What is OBS_5 ?
- 2. Prove or disprove **Rectangle Free Conjecture.**

- 1. What is OBS_5 ?
- 2. Prove or disprove Rectangle Free Conjecture.
- 3. Have $\Omega(\sqrt{c}) \leq |\mathrm{OBS}_c| \leq O(c^2)$. Get better bounds!

- 1. What is OBS_5 ?
- 2. Prove or disprove Rectangle Free Conjecture.
- 3. Have $\Omega(\sqrt{c}) \leq |\mathrm{OBS}_c| \leq O(c^2)$. Get better bounds!
- 4. Refine tools so can prove **ugly** results **cleanly**.

- 1. What is OBS_5 ?
- 2. Prove or disprove Rectangle Free Conjecture.
- 3. Have $\Omega(\sqrt{c}) \leq |\mathrm{OBS}_c| \leq O(c^2)$. Get better bounds!
- 4. Refine tools so can prove **ugly** results **cleanly**.
- 5. Unleash AI on these problems!