

Intermediary Truth Values

TRUE is 1, FALSE is 0

We have dealt with **math** where statements really are **true** or **false** (with some rare exceptions).

The **Real World** is messier!

We want to Truth Values between 0 and 1

So far If x is a boolean var then $x \in \{0, 1\}$.

We want to Truth Values between 0 and 1

So far If x is a boolean var then $x \in \{0, 1\}$.

Today We want to allow $x \in [0, 1]$.

We want to Truth Values between 0 and 1

So far If x is a boolean var then $x \in \{0, 1\}$.

Today We want to allow $x \in [0, 1]$.

This makes sense in English.

We want to Truth Values between 0 and 1

So far If x is a boolean var then $x \in \{0, 1\}$.

Today We want to allow $x \in [0, 1]$.

This makes sense in English.

- ▶ Leo knows a lot of discrete math: I would give that a 0.9.

We want to Truth Values between 0 and 1

So far If x is a boolean var then $x \in \{0, 1\}$.

Today We want to allow $x \in [0, 1]$.

This makes sense in English.

- ▶ Leo knows a lot of discrete math: I would give that a 0.9.
- ▶ Joe Biden was a good president. I won't even try to give this one a number because it's too ill defined. (Also I should not share my politics with the class.)

We want to Truth Values between 0 and 1

So far If x is a boolean var then $x \in \{0, 1\}$.

Today We want to allow $x \in [0, 1]$.

This makes sense in English.

- ▶ Leo knows a lot of discrete math: I would give that a 0.9.
- ▶ Joe Biden was a good president. I won't even try to give this one a number because it's too ill defined. (Also I should not share my politics with the class.)
- ▶ It's going to rain tomorrow. Forecasts give probabilities.

Interpretation

What does it mean to say that statement X gets an 0.8?

Interpretation

What does it mean to say that statement X gets an 0.8?
Can interpret several ways.

Interpretation

What does it mean to say that statement X gets an 0.8?

Can interpret several ways.

- ▶ The probability that X is true is 0.8. Works for weather, does not work for Leo's knowledge of DM or Biden's presidency.

Interpretation

What does it mean to say that statement X gets an 0.8?

Can interpret several ways.

- ▶ The probability that X is true is 0.8. Works for weather, does not work for Leo's knowledge of DM or Biden's presidency.
- ▶ Confidence in the statement.

Interpretation

What does it mean to say that statement X gets an 0.8?

Can interpret several ways.

- ▶ The probability that X is true is 0.8. Works for weather, does not work for Leo's knowledge of DM or Biden's presidency.
- ▶ Confidence in the statement.

We will **not** dwell on this. We will ponder a well defined math question about intermediary truth values.

How to define \wedge , \vee , \neg ?

Criteria:

How to define \wedge , \vee , \neg ?

Criteria:

1. When $x, y \in \{0, 1\}$ should give the same answer as usual case.

How to define \wedge , \vee , \neg ?

Criteria:

1. When $x, y \in \{0, 1\}$ should give the same answer as usual case.
2. Want the definitions to satisfy De Morgan' Law.

How to define \wedge , \vee , \neg ?

Criteria:

1. When $x, y \in \{0, 1\}$ should give the same answer as usual case.
2. Want the definitions to satisfy De Morgan' Law.
3. Want the definitions to make sense intuitively. For example,
 $x \wedge y \leq x$ (harder for $x \wedge y$ to be true then for x to be true)
 $x \vee y \geq x$ (easier for $x \vee y$ to be true then for x to be true)

Work on in groups!

Answer One

Answer One

$$x \wedge y = xy$$

Answer One

$$x \wedge y = xy$$

$$x \vee y = x + y - xy.$$

Answer One

$$x \wedge y = xy$$

$$x \vee y = x + y - xy.$$

$$\neg x = 1 - x.$$

Answer Two

Answer Two

$$x \wedge y = \min\{x, y\}$$

Answer Two

$$x \wedge y = \min\{x, y\}$$

$$x \vee y = \max\{x, y\}$$

Answer Two

$$x \wedge y = \min\{x, y\}$$

$$x \vee y = \max\{x, y\}$$

$$\neg x = 1 - x.$$

Is Their Another Answer?

Is there another way to define \wedge , \vee , \neg that satisfies DeMorgan's law and some other intuitions?

VOTE

Is Their Another Answer?

Is there another way to define \wedge , \vee , \neg that satisfies DeMorgan's law and some other intuitions?

VOTE

- 1) YES and this is known.

Is Their Another Answer?

Is there another way to define \wedge , \vee , \neg that satisfies DeMorgan's law and some other intuitions?

VOTE

- 1) YES and this is known.
- 2) NO. The question has been made rigorous and shown to be NO \downarrow

Is Their Another Answer?

Is there another way to define \wedge , \vee , \neg that satisfies DeMorgan's law and some other intuitions?

VOTE

- 1) YES and this is known.
- 2) NO. The question has been made rigorous and shown to be NO_i
- 3) This question has not been made rigorous.

Is Their Another Answer?

Is there another way to define \wedge , \vee , \neg that satisfies DeMorgan's law and some other intuitions?

VOTE

- 1) YES and this is known.
- 2) NO. The question has been made rigorous and shown to be NO_i
- 3) This question has not been made rigorous.
- 4) This question has been made rigorous and is UNKNOWN TO SCIENCE.

Is Their Another Answer?

Is there another way to define \wedge , \vee , \neg that satisfies DeMorgan's law and some other intuitions?

VOTE

- 1) YES and this is known.
- 2) NO. The question has been made rigorous and shown to be NO_i
- 3) This question has not been made rigorous.
- 4) This question has been made rigorous and is UNKNOWN TO SCIENCE.

Answer on the next page.

And the Answer Is

And the Answer Is

2) NO. The question has been made rigorous and shown to be NO*i*