

Simplifying Mathematical Expressions

The \wedge of Two \leq Statements

Can we simplify:

$$(x \leq 3) \wedge (x \leq 5)$$

The \wedge of Two \leq Statements

Can we simplify:

$$(x \leq 3) \wedge (x \leq 5)$$

DeMorgan's Laws and the others won't help here.

The \wedge of Two \leq Statements

Can we simplify:

$$(x \leq 3) \wedge (x \leq 5)$$

DeMorgan's Laws and the others won't help here.

The definition of \leq helps here. We know that

$$(x \leq 3) \implies (x \leq 5)$$

so $x \leq 5$ is not needed.

The \wedge of Two \leq Statements

Can we simplify:

$$(x \leq 3) \wedge (x \leq 5)$$

DeMorgan's Laws and the others won't help here.

The definition of \leq helps here. We know that

$$(x \leq 3) \implies (x \leq 5)$$

so $x \leq 5$ is not needed.

$$(x \leq 3) \wedge (x \leq 5) \equiv (x \leq 3)$$

Generalization

$A_1 \leq A_2 \leq \cdots \leq A_n$ are real numbers.

Generalization

$A_1 \leq A_2 \leq \cdots \leq A_n$ are real numbers.

$$(x \leq A_1) \wedge \cdots \wedge (x \leq A_n) \equiv (x \leq A_1)$$

Generalization

$A_1 \leq A_2 \leq \cdots \leq A_n$ are real numbers.

$$(x \leq A_1) \wedge \cdots \wedge (x \leq A_n) \equiv (x \leq A_1)$$

$A_1 \leq A_2 \leq \cdots \leq A_n$ are real numbers.

Generalization

$A_1 \leq A_2 \leq \cdots \leq A_n$ are real numbers.

$$(x \leq A_1) \wedge \cdots \wedge (x \leq A_n) \equiv (x \leq A_1)$$

$A_1 \leq A_2 \leq \cdots \leq A_n$ are real numbers.

$$(x \geq A_1) \wedge \cdots \wedge (x \geq A_n) \equiv (x \geq A_n)$$

The \wedge of $a \leq$ and $a \geq$

Can we simplify:

$$(x \leq 10) \wedge (x \geq 3)$$

The \wedge of $a \leq$ and $a \geq$

Can we simplify:

$$(x \leq 10) \wedge (x \geq 3)$$

Yes:

$$3 \leq x \leq 10$$

Generalization

$A_1 \leq A_2 \leq \cdots \leq A_n$ are real numbers.

Generalization

$A_1 \leq A_2 \leq \cdots \leq A_n$ are real numbers.

$B_1 \leq B_2 \leq \cdots \leq B_m$ are real numbers.

Generalization

$A_1 \leq A_2 \leq \cdots \leq A_n$ are real numbers.

$B_1 \leq B_2 \leq \cdots \leq B_m$ are real numbers.

$$(x \leq A_1) \wedge \cdots \wedge (x \leq A_n) \wedge (x \geq B_1) \wedge \cdots \wedge (x \geq B_m)$$

$$\equiv (B_m \leq x \leq A_1)$$

Getting Rid of Negations

Can we simplify:

$$\neg((x \leq 10) \wedge (x \geq 3))$$

Getting Rid of Negations

Can we simplify:

$$\neg((x \leq 10) \wedge (x \geq 3))$$

DeMorgan's law **does** help us:

$$\neg((x \leq 10) \wedge (x \geq 3)) \equiv \neg(x \leq 10) \vee \neg(x \geq 3)$$

Can we simplify further?

Getting Rid of Negations

Can we simplify:

$$\neg((x \leq 10) \wedge (x \geq 3))$$

DeMorgan's law **does** help us:

$$\neg((x \leq 10) \wedge (x \geq 3)) \equiv \neg(x \leq 10) \vee \neg(x \geq 3)$$

Can we simplify further?

$$\neg(x \leq 10) \vee \neg(x \geq 3) \equiv (x > 10) \vee (x < 3) \equiv (x > 10).$$

Getting Rid of Negations

Can we simplify:

$$\neg((x \leq 10) \wedge (x \geq 3))$$

DeMorgan's law **does** help us:

$$\neg((x \leq 10) \wedge (x \geq 3)) \equiv \neg(x \leq 10) \vee \neg(x \geq 3)$$

Can we simplify further?

$$\neg(x \leq 10) \vee \neg(x \geq 3) \equiv (x > 10) \vee (x < 3) \equiv (x > 10).$$

Can always get rid of \neg . We omit generalizations though they may be on the HW.