
A O(
√

p log p) Algorithm for Discrete Log

Bill Gasarch and Douglas Ulrich

January 10, 2014

Let p be a prime; let g be a generator for Z∗
p . (Z∗

p is the set {1, 2, . . . , p − 1}.) All
arithmetic will be mod p. We consider p and g to be fixed and known. We also think of
p as being large so any computation taking p steps is not feasible.

A MULTIPLICATION or COMPARISON between two elements in Z∗
p takes roughly

O(log p) or O(log2 p). We ignore such factors until the very end and just call them
STEPS.
The Discrete Log Problem: Given x find L ∈ [0, p− 1] such that gL = x.

We could do this problem as follows:

1. For L = 0 to p− 1

(a) If gL = x then BREAK

Answer is L

This takes O(p) steps and hence is not feasible. Can we do better? YES- we will
show a way to do this problem in O(

√
p log p).

Let m = Floor(
√

p− 1). Here is the KEY IDEA. We know that 0 ≤ L ≤ p − 1. If
L was divided by m it would be L = am + b where 0 ≤ b ≤ m − 1. (this is standard
division) but ALSO note that 0 ≤ a ≤ m since L ≤ p − 1. Hence our goal is to find a
and b.

The algorithm is in two phases. In phase ONE we do some preprocessing (computa-
tions independent of x). Note that if you need to find many discrete logs using p, g then
the preprocessing need only be done once.
PHASE ONE:

1. For i = 1 to m compute gi. From a list (1, g1), (2, g2), . . ., (m, gm). (This step
takes O(m) = O(

√
p) steps.)

2. SORT the list of ordered pairs based on the SECOND coordinate. (This step takes
O(m log m) = O(

√
p log p) steps. We call this ordered list THE TABLE.

3. For i = 1 to m compute gim. From a list (1, gm), (2, g2m), . . ., (m, gmm). (This
step takes O(m) = O(

√
p) steps.)

1



4. For i = 1 to m compute g−im. From a list (1, g−m), (2, g−2m), . . ., (m, g−mm).
(This step takes O(m) = O(

√
p) steps.)

PHASE ONE takes O(√ log p) steps.
PHASE TWO (we now use x).

First the intuition. We want a, b such that gam+b = x. And recall that 0 ≤ a ≤ m−1.
Lets say a was the answer. Then xg−am = gb where 0 ≤ b ≤ m − 1. We will TRY all
such a. Note that there are only m of them.

1. For i = 0 to m

(a) Compute z = xg−am.

(b) Look for z on the TABLE (the TABLE is sorted so this only takes O(log m) =
O(log p) steps). Note that you may or may not find it.

(c) IF we find z on the TABLE then we have found (b, z) so we know that z = gb

where 0 ≤ b ≤ m− 1. We KNOW that DL(x) = am + b. Here is why:

z = xg−am

gb = xg−am

gam+b = x

The loop has at most m iterations and each one takes O(log p) steps. So PHASE
TWO takes O(m log p) = O(

√
p log p) steps.

Phase ONE and TWO together take O(
√

p log p) steps. Each step is at most (log p)2)
real steps. So the algorithm is O(

√
p log3 p) steps.

1. This works really well in practice.

2. The log factors do not matter in practice.

3. This is called baby-step giant-step algorithm. I’ll let you figure out why.

2


