A O(y/plogp) Algorithm for Discrete Log

Bill Gasarch and Douglas Ulrich

January 10, 2014

Let p be a prime; let g be a generator for Z;. (Z, is the set {1,2,...,p —1}.) All
arithmetic will be mod p. We consider p and ¢ to be fixed and known. We also think of
p as being large so any computation taking p steps is not feasible.

A MULTIPLICATION or COMPARISON between two elements in Z,, takes roughly
O(logp) or O(log?p). We ignore such factors until the very end and just call them
STEPS.

The Discrete Log Problem: Given z find L € [0,p — 1] such that g¥ = z.

We could do this problem as follows:

1. For L=0top—1
(a) If g¥ = x then BREAK
Answer is L

This takes O(p) steps and hence is not feasible. Can we do better? YES- we will
show a way to do this problem in O(y/plogp).

Let m = Floor(y/p — 1). Here is the KEY IDEA. We know that 0 < L < p—1. If
L was divided by m it would be L = am + b where 0 < b < m — 1. (this is standard
division) but ALSO note that 0 < a < m since L < p — 1. Hence our goal is to find a
and b.

The algorithm is in two phases. In phase ONE we do some preprocessing (computa-
tions independent of z). Note that if you need to find many discrete logs using p, g then

the preprocessing need only be done once.
PHASE ONE:

1. For i = 1 to m compute ¢g°. From a list (1,g'), (2,¢%), ..., (m,¢g™). (This step
takes O(m) = O(/p) steps.)

2. SORT the list of ordered pairs based on the SECOND coordinate. (This step takes
O(mlogm) = O(\/plogp) steps. We call this ordered list THE TABLE.

3. For i = 1 to m compute ¢g"™. From a list (1,¢™), (2,¢°™), ..., (m,g™™). (This
step takes O(m) = O(/p) steps.)



4. For i = 1 to m compute g~ ™. From a list (1,g~™), (2,97*™), ..., (m,g
(This step takes O(m) = O(/p) steps.)

PHASE ONE takes O(,/logp) steps.
PHASE TWO (we now use z).

First the intuition. We want a, b such that gam+b =z. And recall that 0 < a < m—1.
Lets say a was the answer. Then zg~ %" = ¢” where 0 < b < m — 1. We will TRY all
such a. Note that there are only m of them.

1. For: =0 tom

am

(a) Compute z = zg~
(b) Look for z on the TABLE (the TABLE is sorted so this only takes O(logm) =
O(logp) steps). Note that you may or may not find it.

(¢) IF we find z on the TABLE then we have found (b, z) so we know that z = g°
where 0 < b <m — 1. We KNOW that DL(z) = am + b. Here is why:

z= xzg *"
b —am
g = 29
gam+b =

The loop has at most m iterations and each one takes O(logp) steps. So PHASE

TWO takes O(mlogp) = O(y/plogp) steps.
Phase ONE and TWO together take O(,/plogp) steps. Each step is at most (log p)?)
real steps. So the algorithm is O(\/ﬁlog?’ p) steps.

1. This works really well in practice.
2. The log factors do not matter in practice.

3. This is called baby-step giant-step algorithm. I'll let you figure out why.



