CFL's are in P

1 Introduction

In this manuscript we prove that if L is a Contex Free Language (CFL) then $L \in P$. In paticular, L can be solved in time $O(n^3)$.

We need the following definitions before we can say what our steps are

Notation 1.1

- 1. Capital letters are nonterminals. Small letters are terminals (elements of Σ). $\sigma \in \Sigma$.
- 2. Let $\alpha, \beta \in (N \cup \Sigma)^*$. $\alpha \to_G^* \beta$ means that starting from α if you apply some finite number of productions you end up with β .

Def 1.2 Let G be a context free grammar.

- 1. G is *e*-free if there are no productions of the form $A \rightarrow e$.
- 2. A unit production is a production of the form $A \to B$.
- 3. G is in Chomsky Normal Form if every production is of the form either $A \to BC$ or $A \to \sigma$

Here is our rough plan. For this high level description we ignore the case where $e \in L(G)$.

- 1. We give a procedure that will take a CFG G such that $e \notin L(G)$ and return an e-free CFG G' such that L(G) = L(G').
- 2. We give a procedure that will take a CFG G with no e-productions and return a CFG G' with no e-production AND no unit productions such that L(G) = L(G').
- 3. We give a procedure that takes a CFG G with no e-productions and no unit productions and return a grammar G' in Chomsky Normal Form such that L(G) = L(G').
- 4. We show that if G is in Chomsky Normal Form then there exists an $O(n^3)$ time algorithm for L(G).

Note 1.3 Better algorithms are known. Let ω be the constant on matrix multiplication. Then there is an algorithm for CFL's that is in time $O(n^{\omega})$.

2 Getting Rid of e-Productions

Theorem 2.1 There is an algorithm that does the following: Given a grammar G (1) Determine if $e \in L(G)$, and (2) (in any case) return an e-free grammar G' such that $L(G') = L(G) - \{e\}$.

Proof: Do the following procedure until either there are no *e*-productions or there is one and it is $S \rightarrow e$.

- 1. If there exists a production of the form $A \to e \ (A \neq S)$ then do the following:
 - (a) Remove the production $A \to e$.
 - (b) For every production of the form $B \to \alpha A \beta$ add the production $B \to \alpha \beta$. (Note- you still KEEP the production $B \to \alpha A \beta$.)

If at the end there are NO *e*-productions then $e \notin L(G)$ and the resulting grammar is G'. If at the end there are is the *e*-productions $S \to e$ then $e \in L(G)$ and let G' be the resulting grammar MINUES $S \to e$.

3 Getting Rid of Unit Productions

Def 3.1 Let $G = (N, \Sigma, P, S)$ be a CFG. A production of the form $A \to B$ is a *unit production*.

Theorem 3.2 There exists an algorithm that will, given a $CFG G = (N, \Sigma, P, S)$ with no e-productions, will output a grammar $G' = (N', \Sigma, P', S')$ with no e-production AND no unit productions such that L(G) = L(G').

Proof: We give the algorithm, show that it works in the correct time, but do not prove that it works.

We use \Rightarrow to mean \rightarrow_G^* . We first find all $A, B \in N$ such that $A \Rightarrow B$. Since there are no e-productions this is easy and only involves unitproductions. Formally we make a directed graph out of all of the nonterminals, with an edge between X and Y if $X \to Y$. Then, all pairs A, B such that there is a directed graph from A to B are all the pairs such that $A \Rightarrow B.$

Let the set of all (A, B) such that $A \Rightarrow B$ be called SUPERUNITS.

- 1. Let PROD be P minus the UNIT productions.
- 2. Find the set of SUPERUNITES.
- 3. For all SUPERUNITS $A \Rightarrow B$ do
 - (a) For all productions in *PROD* of the form $X \to \alpha_1 A \alpha_2 A \cdots \alpha_{L-1} A \alpha_L$ add all productions that replace some of the *A*'s with *B*'s (there will be $2^L - 1$ new productions). Note that these new productions will NOT be unit productions.

4 Chomsky Normal Form

Def 4.1 A grammar Let $G = (N, \Sigma, P, S)$ is in *Chomsky Normal Form* if every production is either of the form $A \to BC$ or $A \to \sigma$ where $\sigma \in \Sigma$.

Theorem 4.2 There exists an algorithm that will, given a $CFG G = (N, \Sigma, P, S)$ with no e-productions, no unit productions, output a grammar $G' = (N', \Sigma, P', S')$ in Chomsky Normal Form such that such that L(G) = L(G').

Proof:

Look at each rule of the form $A \to \alpha_1 \alpha_2 \cdots \alpha_L$.

- 1. If L = 2 and α_1, α_2 are nonterminals then leave this production alone.
- 2. If L = 2 and at least one of α_1, α_2 is a terminal OR if $L \ge 3$ then we do the following:
 - (a) Replace every terminal α_i with nonterminal $[\alpha_i]$ and add the rule $[\alpha_i] \to \alpha_i$.
 - (b) Note that the rule is now of the form $A \to \beta_1 \cdots \beta_L$ where each β_i is a nonterminal. Replace this with the following: $A \to [\beta_1 \cdots \beta_{L-1}]\beta_L$ $[\beta_1 \cdots \beta_{L-1}] \to [\beta_1 \cdots \beta_{L-2}]\beta_{L-1}$ $[\beta_1 \cdots \beta_{L-2}] \to [\beta_1 \cdots \beta_{L-3}]\beta_{L-2}$ etc until $[\beta_1\beta_2\beta_3]] \to [\beta_1\beta_2]\beta_3$ $[\beta_1\beta_2] \to \beta_1\beta_2.$

5 CFL's in P

Theorem 5.1 If L is a CFL then L is in $O(n^3)$.

Proof: If $L = \emptyset$ then L is in $O(n^3)$ time. Apply the procedure in Theorems 2.1 and 3.2 to determine if $e \in L(G)$ and also to obtain a G' such that $L(G') = L(G) - \{e\}$.

We show that L(G') is in $O(n^3)$. This time does not count for the algorithm. This time is preprocessing.

We use DYNAMIC PROGRAMMING! Intuitively: Given a string $w = w_1w_2...w_n$ we want to look which nonterminals A can produce $w_i \cdots w_j$. We do this, first for i = j (that is j - i = 0) then for j - i = 1, j - i = 2, etc. The KEY is that D generates $w_iw_{i+1}...w_j$ iff $D \to BC$ and B generates a prefix, say $w_i \cdots w_k$, and C generates the remaining suffice, say $w_{k+1} \cdots w_n$.

The KEY definition is

$$A[i,j] = \{B \mid B \Rightarrow w_i \cdots w_j\}.$$

The formal algorithm is on then page.

There are $O(n^2)$ spaces in the array to fill out. Each one takes at most O(n) to fill out.

CFL's in P

for i=1 to n
$A[i, i] = \{B \mid B \to w_i\}$
for $d=1$ to $n-1$
for i=1 to n-d
j=i+d
$A[i, j] = \bigcup_{i < k < j} \{D \mid B \in A[i, k] \land C \in A[k+1, j] \land D \to BC\}$
If $S \in A[1,n]$ then output YES, else output NO.

