
The Complexity of Theorem-Proving Procedures

Stephen A. Cook

University of Toronto

Summary

It is shown that any recognition
problem solved by a polynomial time-
bounded nondeterministic Turing
machine can be "reduced" to the pro-
blem of determining whether a given
propositional formula is a tautology.
Here "reduced" means, roughly speak-
ing, that the first problem can be
solved deterministically in polyno-
mial time provided an oracle is
available for solving the second.
From this notion of reducible,
polynomial degrees of difficulty are
defined, and it is shown that the
problem of determining tautologyhood
has the same polynomial degree as the
problem of determining whether the
first of two given graphs is iso-
morphic to a subgraph of the second.
Other examples are discussed. A
method of measuring the complexity of
proof procedures for the predicate
calculus is introduced and discussed.

Throughout this paper, a set of
strings means a set of strings on
some fixed, large, finite alphabet Z.
This alphabet is large enough to in-
clude symbols for all sets described
here. All Turing machines are deter-
ministic recognition devices, unless
the contrary is explicitly stated.

i. Tautologies and Polynomial Re-
Reducibility.

Let us fix a formalism for
the propositional calculus in
which formulas are written as
strings on I. Since we will re-
quire infinitely many proposition
symbols (atoms), each such symbol
will consist of a member of Z
followed by a number in binary
notation to distinguish that
symbol. Thus a formula of length
n can only have about n/logn
distinct function and predicate
symbols. The logical connectives
are & (and), v (or), and ~(not).

The set of tautologies
(denoted by {tautologies}) is a

certain recursive set of strings on
this alphabet, and we are interested
in the problem of finding a good
lower bound on its possible recog-
nition times. We provide no such
lower bound here, but theorem 1 will
give evidence that {tautologies} is
a difficult set to recognize, since
many apparently difficult problems
can be reduced to determining tau-
tologyhood. By reduced we mean,
roughly speaking, that if tauto-
logyhood could be decided instantly
(by an "oracle") then these problems
could be decided in polynomial time.
In order to make this notion precise,
we introduce query machines, which
are like Turing machines with oracles
in [I].

A query machine is a multitape
Turing machine with a distinguished
tape called the query tape, and
three distinguished states called
the query state, yes state, and n._o_
state, respectively. If M is a
query machine and T is a set of
strings, then a T-computation of M
is a computation of M in which
initially M is in the initial
state and has an input string w on
its input tape, and each time M
assumes the query state there is a
string u on the query tape, and
the next state M assumes is the
yes state if uET and the no state
if u~T. We think of an "oracle",
which knows T, placing M in the
yes state or no state.

Definition

A set S of strings is P-redu-
cible (P for polynomial) to a set
T of strings iff there is some
query machine M and a polynomial
Q(n) such that for each input string
w, the T-computation of M with in-
put w halts within Q(Iwl) steps
(lwl is the length of w~ and ends
in an accepting state iff wcS.

It is not hard to see that
P-reducibility is a transitive re-
lation. Thus the relation E on

-151-

sets of strings, given by (S,T)eE iff
each of S and T is P-reducible to
the other, is an equivalence relation.
The equivalence class containing a set
S will be denoted by deg (S) (the po-
lynomial degree of difficulty of S).

Definition: We will denote deg ({0}) by
~,, where 0 denotes the zero func-
tion.

Thus ~, is the class of sets re-
cognizable in polynomial time. ~,
was discussed in [2], p. 5, and is the
string analog of Cabham's class of
functions [3].

We now define the following special
sets of strings.

i) The subgraph problem is the
problem given two finite undirected
graphs, determine whether the first is iso-
morphic to a subgraph of the second. A
graph G can be represented by a string

on the alphabet {0,i,*} by listing
the successive rows of its adjacency
matrix, separated by *s. We let {sub-
graph pairs} denote the set of strings

Gi**G 2 such that G 1 is isomorphic to

a subgraph of G
2"

2) The graph isomorphism problem
will be represented by the set, denoted
by {isomorphic graphpairs}, of all

strings Gi**G 2 such that G 1 is iso-

morphic to G 2.

3) The set {Primes} is the set of
all binary notations for prime numbers.

4) The set {DNF tautologies} is
the set of strings representing tauto-
logies in disjunctive normal form.

5) The set D 3 consists of those

tautologies in disjunctive normal form
in which each disjunct has at most three
conjuncts (each of which is an atom or
negation of an atom).

Theorem I: If a set S of strings is
accepted by some nondeterministic Turing
machine within polynomial time, then S
is P-reducible to {DNF tautologies}.

Corollary: Each of the sets in defini-
tions 1)-5) is P-reducible to {DNF
tautologies}.

This is because each set, or its
complement, is accepted in polynomial
time by some nondeterministic Turing

machine.

Proof of the theorem: Suppose a non-
deterministic Turfng machine M accepts
a set S of strings within time Q(n),
where Q(n) is a polynomial. Given an
input w for M, we will construct a
proposition formula A(w) in conjunc-
tive normal form such that A(w) is
satisfiable iff M accepts w . Thus

A(w) is easily put in disjunctive
normal form (using De Morgan's laws),
and A(w) is a tautology if and only
if w~S. Since the whole construction
can be carried out in time bounded by
a polynomial in lwl (the length of w),
the theorem will be proved.

We may as well assume the Turing
machine M has only one tape, which is
infinite to the right but has a left-
most square. Let us number the squares
from left to right I, 2, Let us
fix an input w to M of length n,
and suppose wES. Then there is a
computation of M with input w that
ends in an accepting state within
T = Q(n) steps. The formula A(w) will
be built from many different proposi-
tion symbols, whose intended meanings,
listed below, refer to such a compu-
tation.

Suppose the tape alphabet for M
is {oi, ..., o£}, and the set of

states is {ql' "''' qs }" Notice that

since the computation has at most

T = Q(n) steps, no tape square beyond

number T is scanned.

Proposition symbols:

pi fo= i~'i~£, l~s,t~T.
s,t

pi is true iff tape square number s
s,t

at step t contains the symbol °i

i i
Qt for l~i~r, l~t~T. Qt is

true iff at step t the machine is in

state qi"

S for l~s,t~T is true iff at
. s , t

time t square number s is scanned

by the tape head.

The formula A(w) is a conjunc-
tion B&C&D&E&F&G&H&I formed as
follows. Notice A(w) is in con-
junctive normal form.

-152-

B will assert that at each step t, one
and only one square is scanned. B is a
conjunction B 1 & B 2 & ... & BT, where

B t asserts that at time t one and

only one square is scanned:

B t = (Si, t v $2, t v ... v ST,t) &

[& C~ v ~S]
l_<i< j_<T Si't J't)

For l_<ssT and l_<t_<T • C j s,t

asserts that at square s and time t
there is one and only one symbol. C is
the conjunction of all the C s,t"

D asserts that for each t there
is one and only one state.

E asserts the initial conditions
are satisfied:

i I i 2 i o p n
E = Q1 & Sl,l & Pi,i & P2,1 & "'" & n,l

& pl 1
n+l,1 &' '" & PT,1

where w = Oil °in' qo is

the initial state and o I is the blank

symbol.

F, G, and H assert that for each
time t the values of the P's, Q's
and S's are updated properly. For exam-
ple, G is the conjuction over all

t, i j of G. t where G. t ' l,j' l,j asserts

that if at time t the machine is in

state qi scanning symbol oj, then at

time t + 1 the machine is in state qk'

where qk is the state given by the

transition function for M.

t T i " k
= & (7 Qt v7 S v 7P~ v

Gi,j s= 1 s,t ,t Qt+l)

Finally, the formula I asserts
that the machine reaches an accepting
state at some time. The machine M
should be modified so that it continues
to compute in some trival fashion after
reaching an accepting state, so that
A(w) will be satisfied.

It is now straightforward to verify
that A(w) has all the properties as-
serted in the first paragraph of the

proof.

Theorem 2: The following sets are
P-reducible to each other in pairs (and
hence each has the same polynomial degree
of difficulty): {tautologies}, {DNF
tautologies}, D3, {subgraph pairs}.

Remark: We have not been able to add
~ h ~ {primes} or {isomorphic graph
pairs} to the above list. To show
(tautologies} is P--reducible to
(primes} would seem to require some deep
results in number theory, while showing
{tautologies} is P-reducible to (iso-
morphic graph pairs} would probably
upset a conjecture of Corneil's [4] from
which he deduces that the ~raph isomor- .
phism problem can be solved in po±ynomia±
time.

Incidently, it not hard to see from
the Davis-Putnam procedure [5] that the
set D~ consisting of all DNF tautolo-
gies wlth at most two conjuncts per dis-
junct, is in ~*. Hence D 2 cannot be

added to the list in theorem 2 ~unless
all sets in the list are in ~-*).

Proof of theorem 2: By the corollary to

theorem i, each of the sets is P-reduc-
ible to {DNF tautologies}. Since
obviously {DNF tautologies} is P-reduc-
ible to {tautologies}, it remains to show
{DNF tautologies} is P-reducible to D 3

and D 3 is P-reducible to {subgraph

pairs}.

To show {DNF tautologies} is
P-reducible to D3, let A be a propo-

sition formula in disjunctive normal
form. Say A = B 1 v B 2 v ... v Bk,

where B 1 = R 1 & ... & R s, and each

R i is an atom or negation of an atom,

and s > 3. Then A is a tautology if

and only if A' is a tautology where

A' = P&R3&...&Rs v ~P&Ri&R2vB2 v ... v Bk,

where P is a new atom. Since we have
reduced the number of conjuncts in Bi,

this process may be repeated until
eventually a formula is found with at
most three conjuncts per disjunct.
Clearly the entire process is bounded in
time by a polynomial in the length of A.

It remains to show D 3 is P-reduc-
ible to {subgraph pairs}. Suppose A
is a formula in disjunctive normal form
with three conjuncts per disjunct. Thus
A = C 1 v ... v Ck, where

-153-

C i = Ril & Ri2 & Ri3, and each Rij is

an atom or a negation of an atom. Now

let G 1 be the complete graph with ver-

tices {v I, v 2, ... , Vk}, and let G 2

be the graph with vertices {uij},

1 ~ i ~ k, 1 ~ j ~ 3, such that 4. ij
is connected by an edge to Urs if

and only if i ~ r and the two literals

(Rij, Rrs) do not form an opposite pair

(that is they are neither of the form

(P, ~P) nor of the form (~P,P~. Thus

there is a falsifying truth assignment

to the formula A iff there is a graph

homomorphism $: G 1 + G 2 such that for

each i, ~(vi) = uij for some j.

(The homomorphism tells for each i

which of Ril, Ri2 , Ri3 should be fal-

sified, and the selective lack of edges

in G 2 guarantees that the resulting

truth assignment is consistently spe-

cified).

In order to guarantee that a one-one

homomorphism ~ : G 1 + G 2 has the pro-

perty that for each i, ¢(v i) = uij for

some j, we modify G 1 and G 2 as fol-

lows. We select graphs H I , H 2, ..., H k

which are sufficiently distinct from each

other that if Gi is formed from G 1 by

attaching H i to vi, 1 ~ i ~ k, and

G½ is formed from G 2 by attaching H i

to each of Uil and Ui2 and ui3,

1 ~ i ~ k, then every one-one homomor-

phism ~ : G~ ÷ G~ has the property

just stated. It is not hard to see such

a construction can be carried out in po-

lynomial time. Then G~ can be em-

bedded in G~ if and only if A ~ D 3.

This completes the proof of theorem 2.

2. Discussion

Theorem 1 and its corollary give
strong evidence that it is not easy to
determine whether a given proposition
formula is a tautology, even if the
formula is in normal disjunctive form.
Theorems I and 2 together suggest that
it is fruitless to search for a poly-
nomial decision procedure for the sub-
graph problem, since success would bring
polynomial decision procedures to many
other apparently intractible problems.
Of course the same remark applies to any
combinatorial problem to which {tauto-
logies} is P-reducible.

Furthermore, the theorems suggest
that {tautologies} is a good candidate
for an interesting set not in ~*, and
I feel it is worth spending consider-
able effort trying to prove this con-
jecture. Such a proof would be a major
breakthrough in complexity theory.

In view of the apparent complexity of
{DNF tautologies}, it is interesting to
examine the Davis-Putnam procedure [5].
This procedure was designed to determine
whether a given formula in conjunctive
normal form is satisfiable, but of course
the "dual" procedure determines whether
a given formula in disjunctive normal
form is a tautology. I have not yet been
able to find a series of examples showing
the procedure (treated sympathetically to
avoid certain pitfalls) must require more
than polynomial time. Nor have I found
an interesting upper bound for the time
required.

If we let strings represent natural
numbers, (or k-tuples of natural num-
bers) using m-adic or other suitable
notation, then the notions in the pre-
ceeding sections can be made to apply to
sets of numbers (or k-place relations on
numbers). It is not hard to see that the
set of relations accepted in polynomial
time by some nondeterministic Turing ma-
chine is precisely the set ~f+ of re-
lations of the form

(I) (3y_<gk(i)) R(i,y)

where gk(x) 2 (£ (max i))k = , £(z) is the

-154-

dyadic length of z, and R(x,y) is an

* relation, (~ + is the class of ex-
tended positive rudimentary relations
of Bennett [6]). If we remove the bound
on the quantifier in formula (i), the

class ~ + would become the class of re-
cursively enumerable sets. Thus if

~ is the analog of the class of r.e.
sets, then determining tautologyhood is
the analog of the halting problem; since,
according to theorem i, {tautologies}

has the complete g~+ degree just as the
halting problem has the complete r.e.
degree. Unfortunately, the diagonal
argument which shows the halting problem
is not recursive apparently cannot be
adapted to show {tautologies} is not in

3. The Predicate Calculus

Formulas in the predicate calculus
are represented by strings in a manner
similar to the propositional calculus.
In addition to the symbols for the lat-
ter, we need the quantifier symbols V
and J, and symbols for forming an in-
finite list of individual variables, and
infinite lists of function and predicate
symbols of each order (of course the
underlying alphabet Z is still finite).

Suppose Q is a procedure which
operates on the above formulas and which
terminates on a given input formula A
iff A is unsatisfiable. Since there is
no decision procedure for satisfiability
in the predicate calculus, it follows
that there is no recursive function T
such that if A is unsatisfiable, then
Q will terminate within T(n) steps,
where n is the length of A. How then
does one appraise the efficiency of the
procedure?

We Jill take the following approach.
Most automatic theorem provers depend on
the Herbrand theorem, which states brief-
ly that a formula A is unsatisfiable if
and only if some conjunction of substi-
tution instances of the functional form
fn(A) of A is truth functionally in-
consistent. Suppose we order the terms
in the Herbrand universe of fn(A) ac-
cording to rank, and then order in a
natural way the substitution instances
of fn(A) from the Herbrand universe.
The ordering should be such that in
general subst&tution instances which use
terms with greater rank follow substitu-
tion instances which use terms of lesser
rank. Let A I, A 2 be these substi-

tution instances in order.

Definition: If A is unsatisfiable,
then ~(A) is the least k such that
A 1 & A 2 & ... & A k is truth-functional-

ly inconsistent. If A is satisfiable,
then ~(A) is undefined.

Now let Q be the procedure which,
given A, computes the sequence A I, A 2,

... and for each i, tests whether
A 1 & ... & A i is truth-functionally

consistent. If the answer is ever no,
the procedure terminates successfully.
Then clearly there is a recursive T(k)
such that for all k and all formulas
A, if the length of A ~ k and
~(A) ~ k, then Q will terminate with-
in T(k) steps. We suggest that the
function T(k) is a measure of the ef-
ficiency of Q.

For convenience, all procedures in
this section will be realized on single
tape Turing machines, which we shall
call simply machines.

Definition: Given a machine MQ and

recursive function TQ(k), we will say

MQ is of type Q and runs within time

TQ(k) provided that when MQ starts

with a predicate formula A written on

its tape, then MQ halts if and only if

A is unsatisfiable, and for all k, if

~(A) ~ k and IAI ~ log 2 k, then MQ

halts within TQ(k) steps. In this

case we will also say that TQ(k) is

of type Q. Here IAI is the length of

A.

The reason for the condition

IAI ~ log 2 k instead of IAI ~ k, is

that with the latter condition, finding

a lower bound for TQ(k) would be near-

ly equivalent to finding a lower bound

for the decision problem for the propo-

sitional calculus. In particular,

theorem 3A would become obvious and

trivial.

-155-

Theorem 3: A) For any TQ(k) of type

Q,

Tq,(k)
(2) is unbounded.

~f/(log k) 2

B) There is a TQ(k)

type Q such that

2
k(log k) T~rk~ ~ k 2

of

Outline of proof: A). Given any ma-
chine M, one can construct a predicate
formula A(M) which is satisfiable if
and only if M never halts when start-
ing on a blank tape. This is done
along the lines described in Wang [7]
in the proof which reduces the halting
problem to the decision problem for the
predicate calculus. Further, if M
halts in s steps, then

~(A(M)) ~ s 2 . Thus, if, contrary to

(2), TQ(k) = 0(~fk/log2k), then a mo-

dification of MQ could verify in only

0(~ s~/log2s 2) = 0(s/log2s)

steps that M halted in s steps

2
(provided m ~ log s , where m is the

length of A(M)). A diagonal argument

(see [8] p. 153) shows that this is im-

possible in general.

B) The machine MQ operates in

time TQ by following the procedure

outlined at the beginning of this sec-

tion. Note that the formula A 1 & A 2 &

... & A k has length 0(k log2k), since

we can assume JAJ ~ log k.

Theorem 4: If the set S of strings is

accepted by a nondeterministic machine

within time T(n) = 2 n, and if TQ(k)

is an honest (i.e. real-time countable)

function of type Q, then there is a con-
stant K so S can be recognized by
a deterministic machine within time

TQ(K8 n) .

Proof: Suppose M I is a nondeterminis-

tic machine which accepts S in time

2 n. Let M 2 be a nondeterministic

machine which simulates M I for exactly

2 n steps and then halts, unless M I

accepts the input, in which case M 2

computes forever. Thus for all strings

w, if w ~ S then there is a computation

for which M 2 with input w fails to

halt, and if w ~ S, then M 2 with in-

put w halts within 4 n steps for all

computations. Now given w of length

n, we may construct a formula A(w) of

length 0(n) such that A(w) is satis-

fiable if and only if M I accepts w.

(A(w) is constructed in a way similar

to A(M) in the proof of iA). Further,

if M 2 halts within 4 n steps for all

possible computations, then

~(A(w)) ~ K(4n) 2 = K8 n. Thus, a de-

terministic machine M can be con-

structed to determine whether w c S by

presenting MQ with input A(w). If

no result appears within TQ(K8 n) steps,

then w ~ S, and otherwise w ~ S.

4. More Discussion:

There is a large gap between the

lower bound of v~/(logk) 2 for time

functions TQ(k) given in theorem 3A

and a possible
rQ(k) = k2 k(l°g k) 2

-156-

given in 3B. However, there are reasons

for the gap. For example, if we could

improve the result in 3B and find a

TQ(k) bounded by a polynomial in k,

then by theorem 4 we could simulate a

nondeterministic 2 n time bounded ma-

chine deterministically in time p(2 n)

for some polynomial p. This is con-

trary to experience which indicates deter-

ministic simulation of a nondeterminis-

tic T(n) time bounded machine requires

time k T(n) in general.

On the other hand, if we could push

up the lower bound given in theorem 3A

and show

Tq(k)

2 k

i s u n b o u n d e d , t h e n we c o u l d c o n c l u d e

{Tautologies} ~ S~, since otherwise the

general Herbrand proof procedure would

TQ(k) smaller than 2 k. Thus provide a

such an improvement in 3A would require

a major breakthrough in complexity

theory.

The field of mechanical theorem

proving badly needs a basis for com-

paring and evaluating the dozens of pro-

cedures which appear in the literature.

Performance of a procedure on examples

by computer is a good criterion, but not

sufficient (unless the procedure proves

useful in some practical way). A theo-

retical complexity criterion is needed

which will bring out fundamental limita-

tions and suggest new goals to pursue.

The criterion suggested here (the func-

tion TQ(k)) is probably too crude. For

example, it might be better to make

TQ(k) a function of several variables,

of which one is ~(A), and another might

be the minimum number of substitution

instances of fn(A) needed to form a

contradiction (note that in general not

all of Ai, A2, ..., A~(A) are needed.)

TQ(k) may be a crude measure, but

it does provide a basis for discussion,

and, I hope, will stimulate progress

toward finding better complexity mea-

sures for theorem provers.

I.

2.

3.

4.

5.

6.

REFERENCES

D. L. Kreider and R. W. Ritchie:
Predictably Computable Functionals
and Definitions by Recursion.
Zeitschrift fHr math. Logik und
Grundlagen der Math., Vol. I0,
65-80 (1964).

S. A. Cook: Characterizations of
Pushdown Machines in terms of Time-
Bounded Computers. J. Assoc. Com-
puting Machinery, Vol. 18, No. i,
Jan. 1971, pp 4-18.

Cobham, Alan: The intrinsic compu-
tational difficulty of functions.
Proc. of the 1964 International Con-
gress for Logic, Methodology, and the
Philosophy of Science, North Holland
Publishing Co., Amsterdam, pp. 24-30.

D. G. Corneil and C. C. Gotlieb: An
Efficient Algorithm for Graph Isomor-
phism. J. Assoc Computing Machinery
Vol. 17, No. i, Jan. 1970, pp 51-64.

M. Davis and H. Putnam: A Computing
Procedure for Quantification Theory.
J. Assoc. Computing Machinery, 1960,
pp. 201-215.

J. H. Bennett: On Spectra. Doctoral
Dissertation, Princeton University,
1962.

-157-

?.

8.

Hao Wang: Dominoes and the AEA case
of the decision problems. Proc. of
the Symposium on Mathematical Theory
of Automata, at Polytechnic Institute
of Brooklyn, 1962. pp. 23-55.

John Hopcroft and Jeffrey Ullman:
Formal Languages and their Relation
to Automata. Addison-Wesley, 1969.

-158-

