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Summary 

It is shown that any recognition 
problem solved by a polynomial time- 
bounded nondeterministic Turing 
machine can be "reduced" to the pro- 
blem of determining whether a given 
propositional formula is a tautology. 
Here "reduced" means, roughly speak- 
ing, that the first problem can be 
solved deterministically in polyno- 
mial time provided an oracle is 
available for solving the second. 
From this notion of reducible, 
polynomial degrees of difficulty are 
defined, and it is shown that the 
problem of determining tautologyhood 
has the same polynomial degree as the 
problem of determining whether the 
first of two given graphs is iso- 
morphic to a subgraph of the second. 
Other examples are discussed. A 
method of measuring the complexity of 
proof procedures for the predicate 
calculus is introduced and discussed. 

Throughout this paper, a set of 
strings means a set of strings on 
some fixed, large, finite alphabet Z. 
This alphabet is large enough to in- 
clude symbols for all sets described 
here. All Turing machines are deter- 
ministic recognition devices, unless 
the contrary is explicitly stated. 

i. Tautologies and Polynomial Re- 
Reducibility. 

Let us fix a formalism for 
the propositional calculus in 
which formulas are written as 
strings on I. Since we will re- 
quire infinitely many proposition 
symbols (atoms), each such symbol 
will consist of a member of Z 
followed by a number in binary 
notation to distinguish that 
symbol. Thus a formula of length 
n can only have about n/logn 
distinct function and predicate 
symbols. The logical connectives 
are & (and), v (or), and ~(not). 

The set of tautologies 
(denoted by {tautologies}) is a 

certain recursive set of strings on 
this alphabet, and we are interested 
in the problem of finding a good 
lower bound on its possible recog- 
nition times. We provide no such 
lower bound here, but theorem 1 will 
give evidence that {tautologies} is 
a difficult set to recognize, since 
many apparently difficult problems 
can be reduced to determining tau- 
tologyhood. By reduced we mean, 
roughly speaking, that if tauto- 
logyhood could be decided instantly 
(by an "oracle") then these problems 
could be decided in polynomial time. 
In order to make this notion precise, 
we introduce query machines, which 
are like Turing machines with oracles 
in [I]. 

A query machine is a multitape 
Turing machine with a distinguished 
tape called the query tape, and 
three distinguished states called 
the query state, yes state, and n._o_ 
state, respectively. If M is a 
query machine and T is a set of 
strings, then a T-computation of M 
is a computation of M in which 
initially M is in the initial 
state and has an input string w on 
its input tape, and each time M 
assumes the query state there is a 
string u on the query tape, and 
the next state M assumes is the 
yes state if uET and the no state 
if u~T. We think of an "oracle", 
which knows T, placing M in the 
yes state or no state. 

Definition 

A set S of strings is P-redu- 
cible (P for polynomial) to a set 
T of strings iff there is some 
query machine M and a polynomial 
Q(n) such that for each input string 
w, the T-computation of M with in- 
put w halts within Q(Iwl) steps 
(lwl is the length of w~ and ends 
in an accepting state iff wcS. 

It is not hard to see that 
P-reducibility is a transitive re- 
lation. Thus the relation E on 
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sets of strings, given by (S,T)eE iff 
each of S and T is P-reducible to 
the other, is an equivalence relation. 
The equivalence class containing a set 
S will be denoted by deg (S) (the po- 
lynomial degree of difficulty of S). 

Definition: We will denote deg ({0}) by 
~,, where 0 denotes the zero func- 
tion. 

Thus ~, is the class of sets re- 
cognizable in polynomial time. ~, 
was discussed in [2], p. 5, and is the 
string analog of Cabham's class of 
functions [3]. 

We now define the following special 
sets of strings. 

i) The subgraph problem is the 
problem given two finite undirected 
graphs, determine whether the first is iso- 
morphic to a subgraph of the second. A 
graph G can be represented by a string 

on the alphabet {0,i,*} by listing 
the successive rows of its adjacency 
matrix, separated by *s. We let {sub- 
graph pairs} denote the set of strings 

Gi**G 2 such that G 1 is isomorphic to 

a subgraph of G 
2" 

2) The graph isomorphism problem 
will be represented by the set, denoted 
by {isomorphic graphpairs}, of all 

strings Gi**G 2 such that G 1 is iso- 

morphic to G 2. 

3) The set {Primes} is the set of 
all binary notations for prime numbers. 

4) The set {DNF tautologies} is 
the set of strings representing tauto- 
logies in disjunctive normal form. 

5) The set D 3 consists of those 

tautologies in disjunctive normal form 
in which each disjunct has at most three 
conjuncts (each of which is an atom or 
negation of an atom). 

Theorem I: If a set S of strings is 
accepted by some nondeterministic Turing 
machine within polynomial time, then S 
is P-reducible to {DNF tautologies}. 

Corollary: Each of the sets in defini- 
tions 1)-5) is P-reducible to {DNF 
tautologies}. 

This is because each set, or its 
complement, is accepted in polynomial 
time by some nondeterministic Turing 

machine. 

Proof of the theorem: Suppose a non- 
deterministic Turfng machine M accepts 
a set S of strings within time Q(n), 
where Q(n) is a polynomial. Given an 
input w for M, we will construct a 
proposition formula A(w) in conjunc- 
tive normal form such that A(w) is 
satisfiable iff M accepts w . Thus 

A(w) is easily put in disjunctive 
normal form (using De Morgan's laws), 
and A(w) is a tautology if and only 
if w~S. Since the whole construction 
can be carried out in time bounded by 
a polynomial in lwl (the length of w), 
the theorem will be proved. 

We may as well assume the Turing 
machine M has only one tape, which is 
infinite to the right but has a left- 
most square. Let us number the squares 
from left to right I, 2, Let us 
fix an input w to M of length n, 
and suppose wES. Then there is a 
computation of M with input w that 
ends in an accepting state within 
T = Q(n) steps. The formula A(w) will 
be built from many different proposi- 
tion symbols, whose intended meanings, 
listed below, refer to such a compu- 
tation. 

Suppose the tape alphabet for M 
is {oi, ..., o£}, and the set of 

states is {ql' "''' qs }" Notice that 

since the computation has at most 

T = Q(n) steps, no tape square beyond 

number T is scanned. 

Proposition symbols: 

pi fo= i~'i~£, l~s,t~T. 
s,t 

pi is true iff tape square number s 
s,t 

at step t contains the symbol °i 

i i 
Qt for l~i~r, l~t~T. Qt is 

true iff at step t the machine is in 

state qi" 

S for l~s,t~T is true iff at 
. s , t  

time t square number s is scanned 

by the tape head. 

The formula A(w) is a conjunc- 
tion B&C&D&E&F&G&H&I formed as 
follows. Notice A(w) is in con- 
junctive normal form. 
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B will assert that at each step t, one 
and only one square is scanned. B is a 
conjunction B 1 & B 2 & ... & BT, where 

B t asserts that at time t one and 

only one square is scanned: 

B t = (Si, t v $2, t v ... v ST,t) & 

[ & C~ v ~S ] 
l_<i< j_<T Si't J't) 

For l_<ssT and l_<t_<T • C j s,t 

asserts that at square s and time t 
there is one and only one symbol. C is 
the conjunction of all the C s,t"  

D asserts that for each t there 
is one and only one state. 

E asserts the initial conditions 
are satisfied: 

i I i 2 i o p n 
E = Q1 & Sl,l & Pi,i & P2,1 & "'" & n,l 

& pl 1 
n+l,1 &' '"  & PT,1 

where w = Oil °in' qo is 

the initial state and o I is the blank 

symbol. 

F, G, and H assert that for each 
time t the values of the P's, Q's 
and S's are updated properly. For exam- 
ple, G is the conjuction over all 

t, i j of G. t where G. t ' l,j' l,j asserts 

that if at time t the machine is in 

state qi scanning symbol oj, then at 

time t + 1 the machine is in state qk' 

where qk is the state given by the 

transition function for M. 

t T i " k 
= & (7 Qt v7 S v 7P~ v 

Gi,j s= 1 s,t ,t Qt+l ) 

Finally, the formula I asserts 
that the machine reaches an accepting 
state at some time. The machine M 
should be modified so that it continues 
to compute in some trival fashion after 
reaching an accepting state, so that 
A(w) will be satisfied. 

It is now straightforward to verify 
that A(w) has all the properties as- 
serted in the first paragraph of the 

proof. 

Theorem 2: The following sets are 
P-reducible to each other in pairs (and 
hence each has the same polynomial degree 
of difficulty): {tautologies}, {DNF 
tautologies}, D3, {subgraph pairs}. 

Remark: We have not been able to add 
~ h ~  {primes} or {isomorphic graph 
pairs} to the above list. To show 
(tautologies} is P--reducible to 
(primes} would seem to require some deep 
results in number theory, while showing 
{tautologies} is P-reducible to (iso- 
morphic graph pairs} would probably 
upset a conjecture of Corneil's [4] from 
which he deduces that the ~raph isomor- . 
phism problem can be solved in po±ynomia± 
time. 

Incidently, it not hard to see from 
the Davis-Putnam procedure [5] that the 
set D~ consisting of all DNF tautolo- 
gies wlth at most two conjuncts per dis- 
junct, is in ~*. Hence D 2 cannot be 

added to the list in theorem 2 ~unless 
all sets in the list are in ~-*). 

Proof of theorem 2: By the corollary to 

theorem i, each of the sets is P-reduc- 
ible to {DNF tautologies}. Since 
obviously {DNF tautologies} is P-reduc- 
ible to {tautologies}, it remains to show 
{DNF tautologies} is P-reducible to D 3 

and D 3 is P-reducible to {subgraph 

pairs}. 

To show {DNF tautologies} is 
P-reducible to D3, let A be a propo- 

sition formula in disjunctive normal 
form. Say A = B 1 v B 2 v ... v Bk, 

where B 1 = R 1 & ... & R s, and each 

R i is an atom or negation of an atom, 

and s > 3. Then A is a tautology if 

and only if A' is a tautology where 

A' = P&R3&...&Rs v ~P&Ri&R2vB2 v ... v Bk, 

where P is a new atom. Since we have 
reduced the number of conjuncts in Bi, 

this process may be repeated until 
eventually a formula is found with at 
most three conjuncts per disjunct. 
Clearly the entire process is bounded in 
time by a polynomial in the length of A. 

It remains to show D 3 is P-reduc- 
ible to {subgraph pairs}. Suppose A 
is a formula in disjunctive normal form 
with three conjuncts per disjunct. Thus 
A = C 1 v ... v Ck, where 
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C i = Ril & Ri2 & Ri3, and each Rij is 

an atom or a negation of an atom. Now 

let G 1 be the complete graph with ver- 

tices {v I, v 2, ... , Vk}, and let G 2 

be the graph with vertices {uij}, 

1 ~ i ~ k, 1 ~ j ~ 3, such that 4. ij 
is connected by an edge to Urs if 

and only if i ~ r and the two literals 

(Rij, Rrs) do not form an opposite pair 

(that is they are neither of the form 

(P, ~P) nor of the form (~P,P~. Thus 

there is a falsifying truth assignment 

to the formula A iff there is a graph 

homomorphism $ : G 1 + G 2 such that for 

each i, ~(vi) = uij for some j. 

(The homomorphism tells for each i 

which of Ril, Ri2 , Ri3 should be fal- 

sified, and the selective lack of edges 

in G 2 guarantees that the resulting 

truth assignment is consistently spe- 

cified). 

In order to guarantee that a one-one 

homomorphism ~ : G 1 + G 2 has the pro- 

perty that for each i, ¢(v i) = uij for 

some j, we modify G 1 and G 2 as fol- 

lows. We select graphs H I , H 2, ..., H k 

which are sufficiently distinct from each 

other that if Gi is formed from G 1 by 

attaching H i to vi, 1 ~ i ~ k, and 

G½ is formed from G 2 by attaching H i 

to each of Uil and Ui2 and ui3, 

1 ~ i ~ k, then every one-one homomor- 

phism ~ : G~ ÷ G~ has the property 

just stated. It is not hard to see such 

a construction can be carried out in po- 

lynomial time. Then G~ can be em- 

bedded in G~ if and only if A ~ D 3. 

This completes the proof of theorem 2. 

2. Discussion 

Theorem 1 and its corollary give 
strong evidence that it is not easy to 
determine whether a given proposition 
formula is a tautology, even if the 
formula is in normal disjunctive form. 
Theorems I and 2 together suggest that 
it is fruitless to search for a poly- 
nomial decision procedure for the sub- 
graph problem, since success would bring 
polynomial decision procedures to many 
other apparently intractible problems. 
Of course the same remark applies to any 
combinatorial problem to which {tauto- 
logies} is P-reducible. 

Furthermore, the theorems suggest 
that {tautologies} is a good candidate 
for an interesting set not in ~*, and 
I feel it is worth spending consider- 
able effort trying to prove this con- 
jecture. Such a proof would be a major 
breakthrough in complexity theory. 

In view of the apparent complexity of 
{DNF tautologies}, it is interesting to 
examine the Davis-Putnam procedure [5]. 
This procedure was designed to determine 
whether a given formula in conjunctive 
normal form is satisfiable, but of course 
the "dual" procedure determines whether 
a given formula in disjunctive normal 
form is a tautology. I have not yet been 
able to find a series of examples showing 
the procedure (treated sympathetically to 
avoid certain pitfalls) must require more 
than polynomial time. Nor have I found 
an interesting upper bound for the time 
required. 

If we let strings represent natural 
numbers, (or k-tuples of natural num- 
bers) using m-adic or other suitable 
notation, then the notions in the pre- 
ceeding sections can be made to apply to 
sets of numbers (or k-place relations on 
numbers). It is not hard to see that the 
set of relations accepted in polynomial 
time by some nondeterministic Turing ma- 
chine is precisely the set ~f+ of re- 
lations of the form 

(I) (3y_<gk(i)) R(i,y) 

where gk(x) 2 (£ (max i))k = , £(z) is the 
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dyadic length of z, and R(x,y) is an 

* relation, (~ + is the class of ex- 
tended positive rudimentary relations 
of Bennett [6]). If we remove the bound 
on the quantifier in formula (i), the 

class ~ + would become the class of re- 
cursively enumerable sets. Thus if 

~ is the analog of the class of r.e. 
sets, then determining tautologyhood is 
the analog of the halting problem; since, 
according to theorem i, {tautologies} 

has the complete g~+ degree just as the 
halting problem has the complete r.e. 
degree. Unfortunately, the diagonal 
argument which shows the halting problem 
is not recursive apparently cannot be 
adapted to show {tautologies} is not in 

3. The Predicate Calculus 

Formulas in the predicate calculus 
are represented by strings in a manner 
similar to the propositional calculus. 
In addition to the symbols for the lat- 
ter, we need the quantifier symbols V 
and J, and symbols for forming an in- 
finite list of individual variables, and 
infinite lists of function and predicate 
symbols of each order (of course the 
underlying alphabet Z is still finite). 

Suppose Q is a procedure which 
operates on the above formulas and which 
terminates on a given input formula A 
iff A is unsatisfiable. Since there is 
no decision procedure for satisfiability 
in the predicate calculus, it follows 
that there is no recursive function T 
such that if A is unsatisfiable, then 
Q will terminate within T(n) steps, 
where n is the length of A. How then 
does one appraise the efficiency of the 
procedure? 

We Jill take the following approach. 
Most automatic theorem provers depend on 
the Herbrand theorem, which states brief- 
ly that a formula A is unsatisfiable if 
and only if some conjunction of substi- 
tution instances of the functional form 
fn(A) of A is truth functionally in- 
consistent. Suppose we order the terms 
in the Herbrand universe of fn(A) ac- 
cording to rank, and then order in a 
natural way the substitution instances 
of fn(A) from the Herbrand universe. 
The ordering should be such that in 
general subst&tution instances which use 
terms with greater rank follow substitu- 
tion instances which use terms of lesser 
rank. Let A I, A 2 .... be these substi- 

tution instances in order. 

Definition: If A is unsatisfiable, 
then ~(A) is the least k such that 
A 1 & A 2 & ... & A k is truth-functional- 

ly inconsistent. If A is satisfiable, 
then ~(A) is undefined. 

Now let Q be the procedure which, 
given A, computes the sequence A I, A 2, 

... and for each i, tests whether 
A 1 & ... & A i is truth-functionally 

consistent. If the answer is ever no, 
the procedure terminates successfully. 
Then clearly there is a recursive T(k) 
such that for all k and all formulas 
A, if the length of A ~ k and 
~(A) ~ k, then Q will terminate with- 
in T(k) steps. We suggest that the 
function T(k) is a measure of the ef- 
ficiency of Q. 

For convenience, all procedures in 
this section will be realized on single 
tape Turing machines, which we shall 
call simply machines. 

Definition: Given a machine MQ and 

recursive function TQ(k), we will say 

MQ is of type Q and runs within time 

TQ(k) provided that when MQ starts 

with a predicate formula A written on 

its tape, then MQ halts if and only if 

A is unsatisfiable, and for all k, if 

~(A) ~ k and IAI ~ log 2 k, then MQ 

halts within TQ(k) steps. In this 

case we will also say that TQ(k) is 

of type Q. Here IAI is the length of 

A. 

The reason for the condition 

IAI ~ log 2 k instead of IAI ~ k, is 

that with the latter condition, finding 

a lower bound for TQ(k) would be near- 

ly equivalent to finding a lower bound 

for the decision problem for the propo- 

sitional calculus. In particular, 

theorem 3A would become obvious and 

trivial. 
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Theorem 3: A) For any TQ(k) of type 

Q, 

Tq,(k) 
(2) is unbounded. 

~f/(log k) 2 

B) There is a TQ(k) 

type Q such that 

2 
k(log k) T~rk~ ~ k 2 

of 

Outline of proof: A). Given any ma- 
chine M, one can construct a predicate 
formula A(M) which is satisfiable if 
and only if M never halts when start- 
ing on a blank tape. This is done 
along the lines described in Wang [7] 
in the proof which reduces the halting 
problem to the decision problem for the 
predicate calculus. Further, if M 
halts in s steps, then 

~(A(M)) ~ s 2 . Thus, if, contrary to 

(2), TQ(k) = 0(~fk/log2k), then a mo- 

dification of MQ could verify in only 

0( ~ s~/log2s 2) = 0(s/log2s) 

steps that M halted in s steps 

2 
(provided m ~ log s , where m is the 

length of A(M)). A diagonal argument 

(see [8] p. 153) shows that this is im- 

possible in general. 

B) The machine MQ operates in 

time TQ by following the procedure 

outlined at the beginning of this sec- 

tion. Note that the formula A 1 & A 2 & 

... & A k has length 0(k log2k), since 

we can assume JAJ ~ log k. 

Theorem 4: If the set S of strings is 

accepted by a nondeterministic machine 

within time T(n) = 2 n, and if TQ(k) 

is an honest (i.e. real-time countable) 

function of type Q, then there is a con- 
stant K so S can be recognized by 
a deterministic machine within time 

TQ(K8 n) . 

Proof: Suppose M I is a nondeterminis- 

tic machine which accepts S in time 

2 n. Let M 2 be a nondeterministic 

machine which simulates M I for exactly 

2 n steps and then halts, unless M I 

accepts the input, in which case M 2 

computes forever. Thus for all strings 

w, if w ~ S then there is a computation 

for which M 2 with input w fails to 

halt, and if w ~ S, then M 2 with in- 

put w halts within 4 n steps for all 

computations. Now given w of length 

n, we may construct a formula A(w) of 

length 0(n) such that A(w) is satis- 

fiable if and only if M I accepts w. 

(A(w) is constructed in a way similar 

to A(M) in the proof of iA). Further, 

if M 2 halts within 4 n steps for all 

possible computations, then 

~(A(w)) ~ K(4n) 2 = K8 n. Thus, a de- 

terministic machine M can be con- 

structed to determine whether w c S by 

presenting MQ with input A(w). If 

no result appears within TQ(K8 n) steps, 

then w ~ S, and otherwise w ~ S. 

4. More Discussion: 

There is a large gap between the 

lower bound of v~/(logk) 2 for time 

functions TQ(k) given in theorem 3A 

and a possible 
rQ(k) = k2 k(l°g k) 2 
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given in 3B. However, there are reasons 

for the gap. For example, if we could 

improve the result in 3B and find a 

TQ(k) bounded by a polynomial in k, 

then by theorem 4 we could simulate a 

nondeterministic 2 n time bounded ma- 

chine deterministically in time p(2 n) 

for some polynomial p. This is con- 

trary to experience which indicates deter- 

ministic simulation of a nondeterminis- 

tic T(n) time bounded machine requires 

time k T(n) in general. 

On the other hand, if we could push 

up the lower bound given in theorem 3A 

and show 

Tq(k )  

2 k 

i s  u n b o u n d e d ,  t h e n  we c o u l d  c o n c l u d e  

{Tautologies} ~ S~, since otherwise the 

general Herbrand proof procedure would 

TQ(k) smaller than 2 k. Thus provide a 

such an improvement in 3A would require 

a major breakthrough in complexity 

theory. 

The field of mechanical theorem 

proving badly needs a basis for com- 

paring and evaluating the dozens of pro- 

cedures which appear in the literature. 

Performance of a procedure on examples 

by computer is a good criterion, but not 

sufficient (unless the procedure proves 

useful in some practical way). A theo- 

retical complexity criterion is needed 

which will bring out fundamental limita- 

tions and suggest new goals to pursue. 

The criterion suggested here (the func- 

tion TQ(k)) is probably too crude. For 

example, it might be better to make 

TQ(k) a function of several variables, 

of which one is ~(A), and another might 

be the minimum number of substitution 

instances of fn(A) needed to form a 

contradiction (note that in general not 

all of Ai, A2, ..., A~(A) are needed.) 

TQ(k) may be a crude measure, but 

it does provide a basis for discussion, 

and, I hope, will stimulate progress 

toward finding better complexity mea- 

sures for theorem provers. 

I. 
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