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1 Introduction

In this section we give an example, due to Ellul et al [EKSW05], of a CFL Ln whose CFG has to

be large, but whose CSG is small.

Def 1.1 A CFG G = (N,Σ, S, R) is in Chomsky Normal Form if every rule in R is either of the

form A→ BC or A→ σ where A,B,C ∈ N aand σ ∈ Σ.

The following definition is not standard but it will help us standardize things.

Def 1.2 A CSG G = (N,Σ, S, R) is in Chomsky Normal Form if every rule in R is either of the

form A→ CD OR AB → CD OR A→ σ where A,B,C,D ∈ N aand σ ∈ Σ.

In this manuscript e will assume that CFG’s and CSL’s are in Chomsky Normal Form and we

will measure the size of a grammar by the number of nonterminals.

2 The Proof

Def 2.1 If F is a finite set then PERM(F ) is the set of all permuations of elements of F . Note

that PERM(F ) has |F |! elemenents.

Lemma 2.2 Let 0 < β < 1. Then n!
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Def 2.3 If n ∈ N then [n] = {1, . . . , n}

Theorem 2.4 For all n there exists a language Ln such that

1. Any Chomsky Normal Form CFG for Ln requires Ω

(
1.89n

n3/2

)
nonterminals.

2. There is a CSL for Ln that has O(n2) nonterminals.

Proof:

Let Σ = [n] and Ln = PERM(Σ).

1) Let G = (N,Σ, S, P ) be a Chomsky Normal Form Grammar for Ln. We assume that every

element of N is used in some derivation of an element of Ln. We show that |N | = Ω

(
1.89n

n3/2

)
.

Def 2.5 If A is a nonterminal then GEN(A) = {w | A⇒ w}.

Claim 1: For all nonterminals A there exists a set F ⊆ [n] such that GEN(A) ⊆ PERM(F ).

Proof of Claim 1:
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Let v, v′ ∈ GEN(A). Then there exists u, x, u′, x′ such that

S ⇒ uAx⇒ uvx ∈ PERM(Σ)

and

S ⇒ u′Ax′ ⇒ u′v′x′ ∈ PERM(Σ).

Clearly we also have

S ⇒ u′vx′ ∈ PERM(Σ).

Hence v and v′ must contain exactly the same letters (though they may be in a different order).

Let F be the set of letters in v. Clearly GEN(A) ⊆ PERM(F ).

End of Proof of Claim 1

Def 2.6 If A is a nonterminal then let F (A) be the set F proven to exist in the above claim.

Def 2.7 Let w ∈ Ln and let T be a the parse tree for w ∈ L(G). Let A be a nonterminal that

apperas in the tree. Then LE(A) is the set of leaves that are in the tree below A.

Claim 2: Let w ∈ Ln. There exists (A, u, v, x) ∈ N × Σ∗ × Σ∗ × Σ∗ such that w = uvx,

v ∈ GEN(A), and n/3 ≤ |v| ≤ 2n/3.

Proof of Claim 2:

Look at the Parse tree for w. Since G is in Chomsky Normal Form the parse tree is binary.

Start at the root. At every decision point goto the side that has the most leaves. Let B be the label

on the first node such that the LE(B) ≤ n/3. Let A be the parent of B. A has two children B

and C. Note that LE(A) has MORE THAN n/3 nodes below it since B is the FIRST node that

has LE(B) ≤ n/3 nodes below it. Also note that since LE(B) ≤ n/3 and LE(C) ≤ LE(B),
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LE(C) ≤ n/3. Hence LE(A) = LE(B) + LE(C) ≤ 2n/3. Hence Its easy to see that n/3 ≤

LE(A) ≤ 2n/3. Let v be the word generated by A in this parse Clearly n/3 ≤ |v| ≤ 2n/3.

End of Proof of Claim 2

Let N be the set of nonterminals of G. We map Ln to N × [n]. Given w ∈ Ln find (A, u, v, x)

as in Claim 2. Let i = |u|+ 1, so i is where the v-part starts. Map w to (A, i).

We upper bound the size of the inverse image of any (A, i) ∈ N× [n] and then use that to lower

bound |N |.

Let (A, i) ∈ N × [n]. How many w can map to it? Let w = uvx where v begins at the ith

spot and n/3 ≤ |v| ≤ 2n/3. Note that all of the w’s that map to (A, i) have the same |v|, namely

|F (A)|. We denote this by r and note that n/3 ≤ r ≤ 2n/3.

v ∈ PERM(F (A). There are at most r! such strings. The ux must be a perm of union of the

letters in u and the letters in x. Hence ux ∈ PERM(Σ− F (A)). There are (n− r)! such strings.

Hence there are at most r!(n − r)! elements mapping to (A, i). This is maximized when r = n/3

(or r = 2n/3). So each element of N × [n] has at most (n/3)!(2n/3)! elements in the inverse

image. Hence we get

n! ≤
∑

A∈N,i∈[n]

(n/3)!(2n/3)! ≤ |N |n(n/3)!(2n/3)!

Hence

|N | ≥ 1

n

n!

(n/3)!(2n/3)!

By Lemma 2.2 n!
(n/3)!(2n/3)!

= Θ( 1√
n

1
(1/3)1/3(2/3)2/3

) = Θ(1.89
n

√
n

).

Hence

|N | ≥ Θ

(
1.89n

n3/2

)
.
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2) We give a CSL for L that has O(n2) nonterminals.

S → A1A2 · · ·An

AiAj → AjAi for all 1 ≤ i < j ≤ n

A1 → 1

A2 → 2

...

An → n

This CSL is not in Chomsky Normal Form; however, it is easy to convert it to such without

changing the number of nonterminals by too much.
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