HW 6 CMSC 452. Morally DUE Oct 14

- 1. (10 points) What is your name? Write it clearly. Staple your HW. When is the midterm?
- 2. (30 points) Prove that the number of regular languages is countable.
- 3. (30 points)
 - (a) We first RESTATE the pumping theorem we did in class: We showed:

If L is regular then there exists a constant c such that, for all strings $w \in L$, with $|w| \ge c$, there exists x, y, z with $y \ne e$ such that (1) w = xyz, and (2) $(\forall i \ge 0)[xy^i z \in L]$.

YOU will show the following stronger version:

If L is regular then there exists two constants n_0, n_1 such that, for all strings $w \in L$, with $|w| \ge n_0$, there exists x, y, z with $y \ne e$ $AND |x| \le n_1$ such that (1) w = xyz, and (2) $(\forall i \ge 0)[xy^i z \in L]$.

- (b) Show that $\{w \mid n_a(w) = n_b(w)\}$ is NOT regular by using the stronger pumping theorem and NOT using closure properties.
- 4. (30 points) For each of the following say if it is regular or not and prove your statement.
 - (a) $L_1 = \{a^n \mid (\exists s \ge n) | s \text{ is square } \}.$
 - (b) $L_2 = \{a^n \mid (\exists s \le n) [s \text{ is square }].$
 - (c) $L_3 = \{ a^{\lfloor \log_2(n) \rfloor} \mid n \ge 100 \}.$
 - (d) $L_4 = \{ a^{\lfloor \log_2(n) \rfloor} \mid n \le 100 \}.$
 - (e) $L_5 = \{xyx^R \mid x, y \in \Sigma^*\}.$