Some CFL's that really require Proof By William Gasarch

1 Introduction

We give CFG's for $\{w \mid n_a(w) = n_b(w)\}$ and $\{w \mid n_a(w) \neq n_b(w)\}$.

2 A CFG for $L_{a's=b's} = \{w \mid n_a(w) = n_b(w)\}$

Let G be the CFG:

 $S \to aSb \\ S \to bSa \\ S \to SS \\ S \to e$

Theorem 2.1 $L_{a's=b's} = L(G)$.

Proof:

1) $L(G) \subseteq L_{a's=b's}$.

It is easy to show that if $S \Rightarrow \alpha$ (and α may have S's in it) then $n_a(\alpha) = n_b(\alpha)$ by an induction on the number of steps in the derivation. Hence any string in L(G) (so all terminals) is in $L_{a's=b's}$.

2) $L_{a's=b's} \subseteq L(G)$.

We proof this by induction on |w|. If |w| = 0 then use $S \to e$.

Assume that any string in $L_{a's=b's}$ of length < n is in L(G). Let $w \in L_{a's=b's}$ and |w| = n. We show $w \in L(G)$. There are two cases depending on if w begins with a or b. We do the w begins with a case. The other case is similar. Let $w = a\sigma_2 \cdots \sigma_n$.

Find the least *i* such that $a\sigma_2 \cdots \sigma_i \in L_{a's=b's}$.

If i = n then $\sigma_n = b$ so w = aub where $u \in L_{a's=b's}$. Clearly |u| < |w| so $u \in L(G)$ inductively. Use $S \to aSb$ and then $S \Rightarrow u$ to get $w = aub \in L(G)$.

If i < n then let $u_1 = a\sigma_2 \cdots \sigma_i$ and $u_2 = \sigma_{i+1} \cdots \sigma_n$. Since $u_1, u_2 \in L$, $|u_1| < |w|$, and $|u_2| < w$, both u_1, u_2 are in L(G) inductively. Use $S \to SS$ and $S \Rightarrow u_1$ and $S \Rightarrow u_2$ to get $S \Rightarrow u_1u_2 = w$.

3 A CFG for $L_{a's \neq b's} = \{w \mid n_a(w) \neq n_b(w)\}$

Note that

$$L_{a's \neq b's} = \{ w \mid n_a(w) < n_b(w) \} \cup \{ w \mid n_a(w) > n_b(w) \}$$

We show that

$$L_{a's < b's} = \{ w \mid n_b(w) < n_a(w) \}$$

is a CFL. The proof that

$$L_{a's > b's} = \{ w \mid n_b(w) > n_a(w) \}$$

is a CFL s similar. Then we just take the union.

Let G be:

 $S \rightarrow aT$ $S \rightarrow aS$ $S \rightarrow bSS$ $T \rightarrow aTb$ $T \rightarrow bTa$ $T \rightarrow TT$ $T \rightarrow e$

Note that the last four rules are our grammar for $\{w \mid n_a(w) = n_b(w)\}$ from the last section. Hence we have the following:

Lemma 3.1 $\{w \mid T \Rightarrow w\} = L_{a's=b's}$.

Theorem 3.2 $L(G) = L_{a's < b's}$.

Proof:

1) $L(G) \subseteq L_{a's < b's}$.

We do this by the length of the derivation. If $S \Rightarrow w$ with a derivation of length 1 then the lemma is true vacously. If $S \Rightarrow w$ with a derivation of length 2 then the only one possible is $S \rightarrow aT$ and then $T \rightarrow e$ which yields $S \Rightarrow a$.

Assume that if $S \Rightarrow w'$ with a derivation of length $\leq n - 1$ then $w' \in L_{a's < b's}$. Let $S \Rightarrow w$ via a derivation of length n. We look at what the first rule could be

If $S \to aT$ is the first rule then we don't need the ind hyp. We know that T yields strings $u \in L_{a's=b's}$ so $S \Rightarrow au \in L_{a's<b's}$.

If $S \to aS$ then note that $S \Rightarrow u$ by a derivation of length $\leq n - 1$. Hence inductively $u \in L_{a's < b's}$. Clearly $au \in L_{a's < b's}$.

If $S \to bSS$ then the two S's both have derivations of length $\leq n - 1$ to strings. Let those strings be u_1 and u_2 . Inductively $u_1, u_2 \in L_{a's < b's}$. Hence $bu_1u_2 \in LL$.

2) $L_{a's < b's} \subseteq L(G)$.

We prove this by induction on |w|. Since $w \in L_{a's < b's}$, $|w| \ge 1$. If |w| = 1 then w = a which is easily derived.

Assume all strings in $L_{a's < b's}$ of length $\leq n-1$ can be generated. Let $w \in L_{a's < b's}$ be of length n.

1. If w = au where $u \in L_{a's=b's}$ then use $S \to aT$ and then $T \Rightarrow u$.

- 2. If w = au where $u \in L_{a's < b's}$ then use $S \to aS$ and then $S \Rightarrow u$.
- 3. If w = bu then note that $n_a(u) \ge n_b(u) + 2$. One can easily show that $u = u_1u_2$ where $u_1, u_2 \in L_{a's < b's}$. Use $S \to bSS$, $S \Rightarrow u_1$ and $S \Rightarrow u_2$.

2