
Time and Space Classes and P
Exposition by William Gasarch

1 Deterministic Turing Machines

Turing machines are a model of computation. It is believed that anything that can
be computed can be computed by a Turing Machine. The definition won’t look like
much, and won’t be used much; however, it is good to have a rigorous definition to
refer to.

Def 1.1 A Turing Machine is a tuple (Q,Σ, δ, s, h) where

• Q is a finite set of states. It has the states s, qacc, qrej.

• Σ is a finite alphabet. It contains the symbol #.

• δ : Q− {qacc, qrej} × Σ→ Q× Σ ∪ {R,L}

• s ∈ Q is the start state, qacc is the accept state, qrej is the reject state.

We use the following convention:

1. On input x ∈ Σ∗, x = x1 · · ·xn, the machine starts with tape

#x1x2 · · ·xn#### · · ·

that is one way infinite.

2. The head is initially looking at the xn.

3. If δ(q, σ) = (p, τ) then the state changes from q to p and the symbol σ is
overwritten with τ . The head does not move.

4. If δ(q, σ) = (p, L) then the state changes from q to p and the head moves
Left one square. overwritten with τ . The head does not move. (Similar for
δ(q, σ) = (p,R).

5. If the machine is in state h then it is DONE.

6. If the machine halts in state qacc then we say M ACCEPTS x. If the machine
halts in state qrej then we say M REJECTS x.

Important Note: We can code Turing machines into numbers in many ways. The
important think is that when we do this we can, given a number i, extract out which
Turing Machine it corresponds to (if it does not correspond to one then we just say
its the machine that halts in one step on any input). Hence we can (and will) say
things like
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• Let M1,M2,M3, . . . be a list of all Turing Machines.

• Run Mi(x). This is easy- given i, we can find Mi, — that is, find the code for
it, and then run it on x.

Def 1.2 A set A is DECIDABLE if there is a Turing Machine M such that

x ∈ A→M(x)ACCEPTS

x /∈ A→M(x)REJECTS

2 Time and Space Classes

Def 2.1 Let T (n) be a computable function (think of it as increasing). A is in
DTIME(T (n)) if there is a MULTITAPE TM M that decides A and also, for all
x, M(x) halts in time ≤ T (|x|). Convention: By DTIME(T (n)) we really mean
DTIME(O(T (n)). They are actually equivalent by having your TM just take bigger
steps.

Note that this is unfortunately machine dependent. It is possible that if we allow
2-tapes instead of one it would change how much you can do. We won’t have to deal
with this much since we will usually define classes in terms of multi-tape machines,
and we will allow some slack on the time bound, like: DTIME(nO(1)).

It is known that a Multitape DTIME(T (n)) machine can be simulated by (1) a
1-tape DTIME(T (n)2) TM, and also0 (2) a 2-tape DTIME(T (n) log T (n)) TM.

Def 2.2 Let S(n) be a computable function (think of it as increasing). A is in
DSPACE(S(n)) if there is a TM M that decides A and also, for all x, M(x) only uses
space S(|x|). Convention: By DSPACE(S(n)) we really mean DSPACE(O(S(n)).
They are actually equivalent by having your TM just take bigger steps. Convention:
When dealing with space classes we will have an input tape which is read-only and a
separate worktape. When dealing with space-bounded TMs computing functions we
will also have a write-only output tape.

It is known that a Multitape DSPACE(S(n)) machine can be simulated by a
1-tape DSPACE(S(n)) TM.

Def 2.3 Let T (n) be a computable function (think of it as increasing). A is in
NTIME(T (n)) if there is a Nondet TM M that decides A and also, for all x, M(x),
on any path, halts in time ≤ T (|x|). Convention: By NTIME(T (n)) we really mean
NTIME(O(T (n)). They are actually equivalent by having your TM just take bigger
steps.
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Def 2.4 Let S(n) be a computable function (think of it as increasing). A is in
NSPACE(S(n)) if there is a Nondet TM M that decides A and also, for all x,
M(x), on any path, only uses space ≤ S(|x|). Convention: By NSPACE(S(n)) we
really mean NSPACE(O(S(n)). They are actually equivalent by having your TM
just take bigger steps.

Def 2.5 For all of the definitions below, 1-tape and multitape are equivalent. This
is important in the proof of the Cook-Levin theorem and later in the proof that a
particular lang is EXPSPACE complete and hence not in P.

1. P = DTIME(nO(1)).

2. NP = NTIME(nO(1)). This is equivalent of just using 1-tape TM’s. (This is
equivalent to our quantifier definition.)

3. EXP = DTIME(2nO(1)
).

4. NEXP = NTIME(2nO(1)
).

5. L = DSPACE(O(log n)).

6. NL = NSPACE(O(log n)).

7. PSPACE = DSPACE(nO(1)).

8. EXPSPACE = DSPACE(2nO(1)
).

9. NEXPSPACE = NSPACE(2nO(1)
).

3 Decidable Sets that are NOT in P

Are there any decidable sets that are NOT in P? Yes. We prove that here.
We first need a representation of P .
Let M1,M2, . . . be the set of all Turing Machines Recall that we code TM’s in to

numbers such that, given i, one can actually run Mi. We can also assume that every
TM appears on the list infinitely often since there can always be dummy states. We
will also assume that these are YES-NO machines, that is, if they stop then they have
either YES or NO written on the output tape.

Let N1, N2, . . . be defined as follows:
Ni(x) runs Mi(x) for |x|i steps (it may stop before then). If at this point it has

stopped and said YES or stopped and said NO then thats fine, no need to change it.
If Mi(x) has not stopped within |x|i steps then we have Ni(x) write NO.

KEY: If a language L is in P then there is some Ni such that Ni decides L.
We now give an algorithm that will define a language that is NO in P .
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1. Input(x). If x /∈ 0∗ then OUTPUT NO AND STOP.

2. (Can assume x = 0i for some i.) Run Mi(0
i). (Note that this is guaranteed to

halt within ni steps.) Let b be the output (so b is either YES or NO)

3. If b = Y ES then output NO and halt. If b = NO then output YES and halt.

Let L be the set of strings that this algorithm says YES on. This is clearly
decidable.

We claim that L is not in P . Assume L ∈ P . Then there is some i such that
Ni decides L. But L and Ni differ on the input 0i. Hence L is not decided by Ni.
Contradiction.
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