1 Introduction

We give the constructions that show sketch the proof that all if L_1 and L_2 are regular and $L_1 \cap L_2$, $L_1 \cup L_2$, \overline{L}, and $\text{proj}(L)$ (which we will define) are regular.

Def 1.1 A DFA is a tuple $(Q, \Sigma, \delta, s, F)$ where $\delta : Q \times \Sigma \rightarrow Q$.

We define running a DFA M on a string x in the obvious way. If the DFA ends in a state in F then x is accepted. Otherwise its rejected.

2 Closure Under Intersection

Theorem 2.1 If L_1 and L_2 are regular then $L_1 \cap L_2$ is regular.

Proof:

Let $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$ be the DFA for L_1. Let $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$ be the DFA for L_2.

We define a DFA for $L_1 \cap L_2$. Let $M = (Q_1 \times Q_2, \Sigma, \delta, (s_1, s_2), F_1 \times F_2)$ where δ is defined by, for $(q_1, q_2) \in Q_1 \times Q_2$ and $\sigma \in \Sigma$,

$$\delta((q_1, q_2), \sigma) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma)).$$

The intuition is that the DFA M runs M_1 and M_2 at the same time. If both end up in $F_1 \times F_2$ then both M_1 and M_2 accepted.

3 Closure Under Union

Theorem 3.1 If L_1 and L_2 are regular then $L_1 \cup L_2$ is regular.

Proof:

Let $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$ be the DFA for L_1. Let $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$ be the DFA for L_2.

We define a DFA for $L_1 \cup L_2$. Let $M = (Q_1 \times Q_2, \Sigma, \delta, (s_1, s_2), F_1 \times Q_2 \cup Q_1 \times F_2)$ where δ is defined by, for $(q_1, q_2) \in Q_1 \times Q_2$ and $\sigma \in \Sigma$,

$$\delta((q_1, q_2), \sigma) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma)).$$

The intuition is that the DFA M runs M_1 and M_2 at the same time. If M_1 ends up in F_1 then we accept (independent of what M_2 does), and if M_2 ends up in F_2 then we accept (independent of what M_1 does).
4 Closure Under Complementation

Theorem 4.1 If \(L \) is regular then \(\overline{L} \) is regular.

Proof:

Let \(M = (Q, \Sigma, \delta, s, F) \) be the DFA for \(L \).
We define a DFA for \(\overline{L} \). Let \(M' = (Q, \Sigma, \delta, s, Q - F) \) (recall that \(Q - F = \{ q \mid q \in Q \land q \notin F \} \).
The intuition is that the DFA \(M' \) runs \(M \) but does the opposite when it comes to accepting.

5 Closure Under Complementation

To Compliment a DFA you say

\(\text{DFA, I admire your states!} \)

6 NDFA’s and DFA’s

Recall the definition of an NDFA:

Def 6.1 An NDFA is a tuple \((Q, \Sigma, \Delta, s, F) \) where \(\Delta : Q \times (\Sigma \cup \epsilon) \rightarrow 2^Q \). (Recall that \(2^Q \) is the powerset of \(Q \).

We DO NOT define running an NDFA \(M \) on a string \(x \). Instead we say that an NDFA accepts \(x \) if SOME way of running the machine ends up in a state in \(F \).

Theorem 6.2 If \(L \) is accepted by an NDFA then there exists a DFA such that accepts \(L \).

Proof: Let \(M = (Q, \Sigma, \Delta, s, F) \) be the NDFA for \(L \).
We define a DFA for \(L \). Let \(M' = (2^Q, \Sigma, \delta, s, \mathcal{F}) \) where for \(A \in 2^Q \) and \(\sigma \in \Sigma \),
\[
\delta(A, \sigma) = \bigcup_{q \in A} \Delta(e^aqe^b, \sigma)
\]
(The \(e^a \) and \(e^b \) are strings of the empty string.)
\[
\mathcal{F} = \{ A \mid A \cap F \neq \emptyset \}
\]
The intuition is that the DFA \(M' \) runs ALL possibilities for \(M \). If SOME possibility ends up accepting, then accept.
7 Closure under Projection

Notation 7.1 Let $\Sigma = \{0, 1\}^n$. Note that each element of Σ is itself a string of n bits. If $x \in \Sigma^*$ then $\text{proj}(x)$ is what you get by taking each symbol in x and chopping off the last bit. So if $x \in (\{0, 1\})^*$ then $\text{proj}(x) \in ([0, 1])^{n-1}$. If $L \subseteq ([0, 1])^*$ then $\text{proj}(L) = \{\text{proj}(x) \mid x \in L\}$.

Theorem 7.2 If L is regular than $\text{proj}(L)$ is regular.

Proof: Let $M = (Q, ([0, 1]), \delta, s, F)$ be the DFA for L.
We define an NDFA for L. Let $M' = (Q, \{0, 1\}^{n-1}, \Delta, s, F)$. For $q \in Q$ and $\sigma \in \{0, 1\}^{n-1}$
\[\Delta(q, \sigma) = \{\delta(q, \sigma 0), \delta(q, \sigma 1)\}. \]

8 Closure under Concatenation

Theorem 8.1 If L_1 and L_2 are regular then L_1L_2 is regular.

Proof: Let $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$ be the DFA for L_1. Let $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$ be the DFA for L_2.
By relabelling we can assume $Q_1 \cap Q_2 = \emptyset$.
We define an NDFA for L_1L_2. By Theorem 6.2 we could then obtain a DFA for L_1L_2.
Let $M = (Q_1 \cup Q_2, \Sigma, \delta, s_1, F_2)$ where δ is defines as follows:

- If $q_1 \in Q_1$ and $\sigma \in \Sigma$ then $\delta(q_1, \sigma) = \delta_1(q_1, \sigma)$.
- If $q_2 \in Q_2$ and $\sigma \in \Sigma$ then $\delta(q_2, \sigma) = \delta_2(q_2, \sigma)$.
- If $f_1 \in F_1$ then $\delta(f_1, \epsilon) = s_2$

The intuition is that the NDFA M runs M_1 and then nondeterministically hops to M_2. But the hop must be from $f_1 \in F_1$ to $s_2 \in Q_2$ and then the M_2 must accept, so if w is accepted there must be SOME WAY to divide it $w = xy$ where $x \in L_1$ and $y \in L_2$. □

9 Closure Under *

Theorem 9.1 If L is regular then L^* is regular.

Proof: Let $M = (Q, \Sigma, \delta, s, F)$ be the DFA for L.
We define an NDFA for L^*. LEAVE AS AN EXERCISE.