## Homework 1 Morally Due Feb 5 WARNING: THIS HW IS TWO PAGES LONG!!!!!!!!!!!!!!!!!!!!!

1. (10 points) When will the midterm be (give day and time)? When will the final be (give day and time)? By when do you have to tell Dr. Gasarch that you cannot make the midterm? The final?

## SOLUTION TO PROBLEM ONE

Midterm is on Tuesday, March 12, in class Final is on Tudestday, May 21, 1:30PM - 3:30 PM Must tell Bill by Feb 12 in both cases (?)
2. (30 points) The alphabet is $\{0, \ldots, 9\}$. We interpret the input as a base 10 natural number, read right to left. So the number 29139 will be read 9-3-1-9-2.
(a) (15 points) Give the diagram for a finite automata classifier that determines, given $w$, what $w$ is congruent to mod 4. How many states does it have?
(b) (15 points) Give the diagram for a finite automata that just determines, given $w$, if $w \equiv 0(\bmod 4)$, which has LESS STATES then the one you had in the first part (don't be obnoxious and purposely do an awful finite automata for the first one).

Solution to problem 2:

a tikz diagram for part b
3. (30 points) Same conventions as in the last problem.
(a) (5 points) Compute
$10^{0} \quad(\bmod 11)$
$10^{1} \quad(\bmod 11)$
$10^{2} \quad(\bmod 11)$
etc. until you spot a pattern. What is the pattern?
(b) (25 points) Describe a finite automata classifier that determines, given $w$, what $w$ is congruent to mod 11. NOTE- the diagram would be very hard to draw, so just describe it. How many states does it have?
(c) (0 points) Think about but don't turn in: Do you think that mod 11 has a trick that you could easily use?
(d) (0 points) Think about but don't turn in: Would a finite automata that just, given $w$, determines is $w \equiv 0(\bmod 11)$ have LESS states than the classifier?

## GO TO NEXT PAGE FOR THE REST OF THE HW

4. (30 points) The alphabet is $\{0, \ldots, 8\}$. We interpret the input as a base 9 natural number, read right to left. So the number 28138 will be read 8-3-1-8-2.
(a) (15 points) Give the diagram for a finite automata classifier that determines, given $w$, what $w$ is congruent to mod 3. How many states does it have?
(b) (15 points) Give the diagram for a finite automata classifier that determines, given $w$, what $w$ is congruent to mod 4. How many states does it have?
SOLUTION OMITTED
