1. (30 points) The alphabet is $\{a, b\}$. Let $n \ge 0$ and let

$$L_n = \{a, b\}^* a \{a, b\}^n$$

(so the (n+1)th letter from the end is a).

(a) (15 points) Draw a DFA for L_n when n = 2. Describe the DFA for L_n for any general n. How many states does L_n have in general as a function of n?

This DFA has 8 states; a DFA for L_n has 2^{n+1} states, one for each possible string a, b^n , cycling out the oldest character for the new one.

(b) (15 points) Draw an NFA for L_n for any general n. You may use DOT DOT DOT and other shortcuts. How many states does it have as a function of n?

Such an NFA has n + 2 states:

(c) (0 points) THINK ABOUT proving that any DFA for L_n has LOTS of states.

- 2. (30 points) Use the conventions about representing numbers and sets established in class. Your DFA's should have ACCEPT states (labelled A), REJECT states (labelled R), and STUPID states (labelled S).
 - (a) (15 points) Draw a DFA for

$$\{(x, A) \mid x + 1 \in A\}$$

How many states does it have?

The $x + 1 \in A$ DFA has 4 states:

(b) (15 points) For all n draw a DFA (you may use DOT DOT DOT) for

$$L_n = \{ (x, A) \mid x + n \in A \}$$

How many states does it have as a function of n?

The $x + n \in A$ DFA has n + 3 states (note: allⁿ⁻¹ indicates n - 1 transitions for the sake of counting to n):

